Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations

被引:40
|
作者
Li, FY [1 ]
Shu, CW [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Hamilton-Jacobi equations; discontinuous Galerkin method;
D O I
10.1016/j.aml.2004.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we reinterpret a discontinuous Galerkin method originally developed by Hu and Shu [C. Hu, C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM Journal on Scientific Computing 21 (1999) 666-690] (see also [0. Lepsky, C. Hu, C.-W. Shu, Analysis of the discontinuous Galerkin method for Hamilton-Jacobi equations, Applied Numerical Mathematics 33 (2000) 423-434]) for solving Hamilton-Jacobi equations. With this reinterpretation, numerical solutions will automatically satisfy the curl-free property of the exact solutions inside each element. This new reinterpretation allows a method of lines formulation, which renders a more natural framework for stability analysis. Moreover, this reinterpretation renders a significantly simplified implementation with reduced cost, as only a smaller subspace of the original solution space in [C. Hu, C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM Journal on Scientific Computing 21 (1999) 666-690; 0. Lepsky, C. Hu, C.-W. Shu, Analysis of the discontinuous Galerkin method for Hamilton-Jacobi equations, Applied Numerical Mathematics 33 (2000) 423-434] is used and the least squares procedure used in [C. Hu, C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM Journal on Scientific Computing 21 (1999) 666-690; 0. Lepsky, C. Hu, C.-W. Shu, Analysis of the discontinuous Galerkin method for Hamilton-Jacobi equations, Applied Numerical Mathematics 33 (2000) 423-434] is completely avoided. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1204 / 1209
页数:6
相关论文
共 50 条
  • [31] PERRON METHOD FOR HAMILTON-JACOBI EQUATIONS
    ISHII, H
    DUKE MATHEMATICAL JOURNAL, 1987, 55 (02) : 369 - 384
  • [32] An Arbitrary Lagrangian–Eulerian Local Discontinuous Galerkin Method for Hamilton–Jacobi Equations
    Christian Klingenberg
    Gero Schnücke
    Yinhua Xia
    Journal of Scientific Computing, 2017, 73 : 906 - 942
  • [33] Discontinuous solutions of Hamilton-Jacobi equations: Existence, uniqueness, and regularity
    Chen, GQ
    Su, B
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2003, : 443 - 453
  • [34] Boundary value problems for Hamilton-Jacobi equations with discontinuous lagrangian
    Soravia, P
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (02) : 451 - 477
  • [35] Monge solutions for discontinuous Hamilton-Jacobi equations in Carnot groups
    Essebei, Fares
    Giovannardi, Gianmarco
    Verzellesi, Simone
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (05):
  • [36] The Carleman convexification method for Hamilton-Jacobi equations
    Le, Huynh P. N.
    Le, Thuy T.
    Nguyen, Loc H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 159 : 173 - 185
  • [37] AN EFFICIENT ADER DISCONTINUOUS GALERKIN SCHEME FOR DIRECTLY SOLVING HAMILTON-JACOBI EQUATION
    Duan, Junming
    Tang, Huazhong
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2020, 38 (01) : 58 - 83
  • [38] An Alternative Formulation of Discontinous Galerkin Schemes for Solving Hamilton-Jacobi Equations
    Ke, Guoyi
    Guo, Wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 1023 - 1044
  • [39] Systems of Hamilton-Jacobi equations
    Cambronero, Julio
    Perez Alvarez, Javier
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (04) : 650 - 658
  • [40] Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations
    Bertsch, Michiel
    Smarrazzo, Flavia
    Terracina, Andrea
    Tesei, Alberto
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2021, 18 (04) : 857 - 898