Modelling a Rotating Shaft as an Elastically Restrained Bernoulli-Euler Beam

被引:0
|
作者
Silva, T. A. N. [1 ,2 ]
Maia, N. M. M. [2 ]
机构
[1] Inst Super Engn Lisboa, Dept Mech Engn, Rua Conselheiro Emidio Navarro, P-1959007 Lisbon, Portugal
[2] Inst Super Tecn, Dept Mech Engn, P-1049001 Lisbon, Portugal
关键词
ROTATORY INERTIA; POINT MASSES; VIBRATIONS; SINGULARITIES; BEHAVIOR; ENDS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Industrial rotary machines may be exposed to severe dynamic excitations due to resonant working regimes. Dealing with the bending vibration problem of a machine rotor, the shaft - and attached discs - can be simply modelled using the Bernoulli-Euler beam theory, as a continuous beam subjected to a specific set of boundary conditions. In the present work, the authors recall Rayleigh's method to propose an iterative strategy which allows for the determination of natural frequencies and mode shapes of continuous beams taking into account the effect of attached concentrated masses and rotational inertias, including different stiffness coefficients at the right and left end sides. This algorithm starts with exact solutions from Bernoulli-Euler beam theory and then updated through Rayleigh's quotient parameters. Several loading cases are examined in comparison with experimental data and examples are given to illustrate the validity of the model and the accuracy of the obtained values.
引用
收藏
页码:1635 / 1645
页数:11
相关论文
共 50 条
  • [41] Modelling the Floating Ladder Track Response to a Moving Load by an Infinite Bernoulli-Euler Beam on Periodic Flexible Supports
    Hosking, Roger J.
    Milinazzo, Fausto
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2012, 2 (04) : 285 - 308
  • [42] A new Bernoulli-Euler beam model incorporating microstructure and surface energy effects
    Gao, X. -L.
    Mahmoud, F. F.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (02): : 393 - 404
  • [43] Dynamics of an axially moving Bernoulli-Euler beam: Spectral element modeling and analysis
    Oh, H
    Lee, U
    Park, DH
    KSME INTERNATIONAL JOURNAL, 2004, 18 (03): : 395 - 406
  • [44] Vibration control of a rotating Euler-Bernoulli beam
    Diken, H
    JOURNAL OF SOUND AND VIBRATION, 2000, 232 (03) : 541 - 551
  • [45] Dynamics of an axially moving Bernoulli-Euler beam: Spectral element modeling and analysis
    Hyungmi Oh
    Usik Lee
    Dong-Hyun Park
    KSME International Journal, 2004, 18 : 395 - 406
  • [46] Stabilization of a viscoelastic rotating Euler-Bernoulli beam
    Berkani, Amirouche
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (08) : 2939 - 2960
  • [47] Equilibrium Forms of an Initially Curved Bernoulli-Euler Beam in Electric and Thermal Fields
    Morozov, N. F.
    Indeitsev, D. A.
    Mozhgova, N. V.
    Lukin, A. V.
    Popov, I. A.
    DOKLADY PHYSICS, 2023, 68 (02) : 56 - 61
  • [48] Bernoulli-Euler Dielectric Beam Model Based on Strain-Gradient Effect
    Liang, Xu
    Hu, Shuling
    Shen, Shengping
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2013, 80 (04):
  • [49] Unsteady bending of the orthotropic cantilever Bernoulli-Euler beam with the relaxation of diffusion fluxes
    Zemskov, Andrei V.
    Tarlakovskii, Dmitry V.
    Faykin, George M.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (10):
  • [50] Linear static isogeometric analysis of an arbitrarily curved spatial Bernoulli-Euler beam
    Radenkovic, G.
    Borkovic, A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 341 : 360 - 396