GNSS Precipitable Water Vapor from an Amazonian Rain Forest Flux Tower

被引:26
|
作者
Adams, David K. [1 ,2 ]
Fernandes, Rui M. S. [3 ]
Maia, Jair M. F. [4 ,5 ]
机构
[1] Univ Estado Amazonas, CESTU, BR-69050030 Manaus, Amazonas, Brazil
[2] Inst Nacl de Pesquisas da Amazonia, Programa Pos Grad Clima & Ambiente, Manaus, Amazonas, Brazil
[3] Univ Beira Interior, Dept Informat, Covilha, Portugal
[4] Univ Estado Amazonas, Escola Normal Super, BR-69050030 Manaus, Amazonas, Brazil
[5] Large Scale Biosphere Atmosphere Program, Manaus, Amazonas, Brazil
关键词
HIGH-RESOLUTION SIMULATION; DIURNAL CYCLE; CONVECTIVE PRECIPITATION; DENSE NETWORK; GPS; TOMOGRAPHY; TRANSITION; SHALLOW; ASSIMILATION; SYSTEMS;
D O I
10.1175/JTECH-D-11-00082.1
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Understanding the complex interactions between water vapor fields and deep convection on the mesoscale requires observational networks with high spatial (kilometers) and temporal (minutes) resolution. In the equatorial tropics, where deep convection dominates the vertical distribution of the most important greenhouse substance water these mesoscale networks are nonexistent. Global Navigational Satellite System (GNSS) meteorological networks offer high temporal/spatial resolution precipitable water vapor, but infrastructure exigencies are great. The authors report here on very accurate precipitable water vapor (PWV) values calculated from a GNSS receiver installed on a highly nonideal Amazon rain forest flux tower. Further experiments with a mechanically oscillating platform demonstrate that errors and biases of approximately 1 mm (2%-3% of PWV) can be expected when compared with a stable reference GNSS receiver for two different geodetic grade receivers/antennas and processing methods [GPS-Inferred Positioning System (GIPSY) and GAMIT]. The implication is that stable fixed antennas are unnecessary for accurate calculation of precipitable water vapor regardless of processing techniques or geodetic grade receiver.
引用
收藏
页码:1192 / 1198
页数:7
相关论文
共 50 条
  • [21] A New Method for Refining the GNSS-Derived Precipitable Water Vapor Map
    Liu, Chen
    Zheng, Nanshan
    Zhang, Kefei
    Liu, Junyu
    SENSORS, 2019, 19 (03)
  • [22] Refinement of the conversion coefficient for GNSS Precipitable Water Vapor based on the Emardson model
    Li, Li
    Hou, Xiaoling
    Zhang, Wenwen
    Gao, Ying
    Zhao, Wei
    Chen, Guodong
    Acta Geophysica Sinica, 2022, 65 (11): : 4225 - 4235
  • [23] Eddy covariance measurements of nitric oxide flux within an Amazonian rain forest
    Rummel, U
    Ammann, C
    Gut, A
    Meixner, FX
    Andreae, MO
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D20) : LBA17 - 1
  • [24] Homogenization of daily precipitable water vapor time series derived from GNSS observations over China
    Zhu, Dantong
    Zhang, Kefei
    Sun, Peng
    Wu, Suqin
    Wan, Moufeng
    ADVANCES IN SPACE RESEARCH, 2023, 72 (05) : 1751 - 1763
  • [25] Evaluation of Precipitable Water Vapor from Five Reanalysis Products with Ground-Based GNSS Observations
    Wang, Shuaimin
    Xu, Tianhe
    Nie, Wenfeng
    Jiang, Chunhua
    Yang, Yuguo
    Fang, Zhenlong
    Li, Mowen
    Zhang, Zhen
    REMOTE SENSING, 2020, 12 (11)
  • [26] Remote Sensing Products Validated by Flux Tower Data in Amazon Rain Forest
    Paca, Victor Hugo da Motta
    Espinoza-Davalos, Gonzalo E.
    da Silva, Rodrigo
    Tapajos, Raphael
    dos Santos Gaspar, Avner Brasileiro
    REMOTE SENSING, 2022, 14 (05)
  • [27] Estimating daily potential evapotranspiration using GNSS-based precipitable water vapor
    Pipatsitee, Piyanan
    Ninsawat, Sarawut
    Tripathi, Nitin Kumar
    Shanmugam, Mohanasundaram
    Chitsutti, Patsharawadee
    HELIYON, 2023, 9 (07)
  • [28] Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China
    Liang Hong
    Cao Yunchang
    Wan Xiaomin
    Xu Zhifang
    Wang Haishen
    Hu Heng
    GEODESY AND GEODYNAMICS, 2015, 6 (02) : 135 - 142
  • [29] Multiscale Spatiotemporal Variations of GNSS-Derived Precipitable Water Vapor over Yunnan
    Wang, Minghua
    Lv, Zhuochen
    Wu, Weiwei
    Li, Du
    Zhang, Rui
    Sun, Chengzhi
    REMOTE SENSING, 2024, 16 (02)
  • [30] GNSS-DERIVED PRECIPITABLE WATER VAPOR MODELING USING MACHINE LEARNING METHODS
    Izanlou, S.
    Amerian, Y.
    Mousavi, S. M. Seyed
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 307 - 313