MSE superiority of Bayes and empirical Bayes estimators in two generalized seemingly unrelated regressions

被引:3
|
作者
Wang, Lichun [1 ]
Veraverbeke, Noel [2 ]
机构
[1] Jiao Tong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Hasselt Univ, Ctr Stat, B-3590 Diepenbeek, Belgium
基金
中国国家自然科学基金;
关键词
Bayes method; seemingly unrelated regressions; covariance adjusted approach; mean square error criterion;
D O I
10.1016/j.spl.2007.05.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with the estimation problem in a system of two seemingly unrelated regression equations where the regression parameter is distributed according to the normal prior distribution N(beta(0), sigma(2)(beta)Sigma(beta)). Resorting to the covariance adjustment technique, we obtain the best Bayes estimator of the regression parameter and prove its superiority over the best linear unbiased estimator (BLUE) in terms of the mean square error (MSE) criterion. Also, under the MSE criterion, we show that the empirical Bayes estimator of the regression parameter is better than the Zellner type estimator when the covariance matrix of error variables is unknown. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 117
页数:9
相关论文
共 50 条