Counting perfect matchings in n-extendable graphs

被引:1
|
作者
Doslic, Tomislav [1 ]
机构
[1] Univ Zagreb, Dept Math, Fac Civil Engn, Zagreb 10000, Croatia
关键词
n-extendable graph; perfect matching; enumeration;
D O I
10.1016/j.disc.2006.08.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The structural theory of matchings is used to establish lower bounds on the number of perfect matchings in n-extendable graphs. It is shown that any such graph on p vertices and q edges contains at least F(n + 1)!/4[q - p - (n - 1)(2 Delta - 3) + 4]] different perfect matchings, where A is the maximum degree of a vertex in G. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2297 / 2300
页数:4
相关论文
共 50 条
  • [21] Counting Perfect Matchings in Chain Graphs with the Specific Colored Faces
    Saduakdee, Supaporn
    Maliwan, Pattana
    Singthong, Thitaporn
    Sirilap, Supatta
    Khemmani, Varanoot
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (03): : 677 - 686
  • [22] Rainbow Perfect Matchings in Complete Bipartite Graphs: Existence and Counting
    Perarnau, Guillem
    Serra, Oriol
    COMBINATORICS PROBABILITY & COMPUTING, 2013, 22 (05): : 783 - 799
  • [23] COUNTING MATCHINGS IN GRAPHS
    FARRELL, EJ
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1987, 324 (03): : 331 - 339
  • [24] Counting the Number of Perfect Matchings in K 5-Free Graphs
    Straub, Simon
    Thierauf, Thomas
    Wagner, Fabian
    THEORY OF COMPUTING SYSTEMS, 2016, 59 (03) : 416 - 439
  • [25] Franck-Condon factors by counting perfect matchings of graphs with loops
    Quesada, Nicolas
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (16):
  • [26] Counting the Number of Perfect Matchings in K5-Free Graphs
    Simon Straub
    Thomas Thierauf
    Fabian Wagner
    Theory of Computing Systems, 2016, 59 : 416 - 439
  • [27] Counting the Number of Perfect Matchings in K5-free Graphs
    Straub, Simon
    Thierauf, Thomas
    Wagner, Fabian
    2014 IEEE 29TH CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2014, : 66 - 77
  • [28] Counting plane graphs: Perfect matchings, spanning cycles, and Kasteleyn's technique
    Sharir, Micha
    Sheffer, Adam
    Welzl, Emo
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (04) : 777 - 794
  • [29] On graphs with perfect internal matchings
    Acta Cybern, 2 (111):
  • [30] Perfect matchings of cellular graphs
    Ciucu, M
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1996, 5 (02) : 87 - 103