An approximate Newton method for solving non-smooth equations with infinite max functions

被引:0
|
作者
Smietanski, Marek J. [1 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, PL-90238 Lodz, Poland
关键词
non-smooth equation; semismooth function; weak consistently approximated Jacobian; difference approximation; superlinear convergence; SUPERLINEAR CONVERGENCE;
D O I
10.1080/00207160.2010.541451
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new version of an approximate Newton method for solving non-smooth equations with infinite max function is presented. This method uses a difference approximation of the generalized Jacobian based on a weak consistently approximated Jacobian. Numerical example is reported for the generalized Newton method using two versions of approximation.
引用
收藏
页码:2403 / 2414
页数:12
相关论文
共 50 条
  • [41] Inexact Newton method with feasible inexact projections for solving constrained smooth and nonsmooth equations
    de Oliveira, F. R.
    Ferreira, O. P.
    APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 63 - 76
  • [42] MATHEMATICAL PROGRAMMING WITH A CLASS OF NON-SMOOTH FUNCTIONS
    J. DUTTA (Department d’ Economia i d’ Historia Economia Universitat Autonoma de Barcelona
    Journal of Systems Science & Complexity, 2002, (01) : 52 - 60
  • [43] Coupled systems of non-smooth differential equations
    Jacquemard, Alain
    Tonon, Durval J.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (03): : 239 - 255
  • [44] NON-SMOOTH DISSIPATION FUNCTIONS AND YIELD CRITERIA
    LUBLINER, J
    ACTA MECHANICA, 1975, 22 (3-4) : 289 - 293
  • [45] Directional operator differentiability of non-smooth functions
    Arazy, Jonathan
    Zelenko, Leonid
    JOURNAL OF OPERATOR THEORY, 2006, 55 (01) : 49 - 90
  • [46] A UNIFIED APPROACH TO THE PROBLEM OF MINIMIZING SMOOTH AND NON-SMOOTH FUNCTIONS
    ALBER, YI
    SHILMAN, SV
    ENGINEERING CYBERNETICS, 1982, 20 (01): : 21 - 27
  • [47] Piecewise nonlinear approximation for non-smooth functions
    Akansha, S.
    RESULTS IN APPLIED MATHEMATICS, 2024, 23
  • [48] Distributed Learning with Non-Smooth Objective Functions
    Gratton, Cristiano
    Venkategowda, Naveen K. D.
    Arablouei, Reza
    Werner, Stefan
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 2180 - 2184
  • [49] FRACTIONAL HERMITE INTERPOLATION FOR NON-SMOOTH FUNCTIONS
    Zhai, Jiayin
    Zhang, Zhiyue
    Wang, Tongke
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2020, 52 (52): : 113 - 131
  • [50] On existence and uniqueness verification for non-smooth functions
    Kearfott, R. Baker
    2002, Kluwer Academic Publishers (08) : 267 - 282