Existence of multiple solutions to Schrodinger-Poisson system in a nonlocal set up in R3

被引:0
|
作者
Choudhuri, Debajyoti [1 ]
Saoudi, Kamel [2 ]
机构
[1] Natl Inst Technol Rourkela, Dept Math, Rourkela 769008, India
[2] Imam Abdulrahman Bin Faisal Univ, Basic & Appl Sci Res Ctr, Dammam, Saudi Arabia
来源
关键词
Berestycki-Lions type condition; Ekeland's variational principle; Mountain pass theorem; Pohozaev's identity; Singularity; GROUND-STATE SOLUTIONS; SOLITARY WAVES; MAXWELL SYSTEM; EQUATIONS; NONLINEARITY;
D O I
10.1007/s00033-021-01649-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to study the following system: (-Delta)(s)u + alpha phi u = beta u(-gamma) + g(u) + h(x) in R-3 u > 0 in R-3 (-Delta)(s)phi = u(2) in R-3. under the Berestycki-Lions type condition. Here alpha, beta > 0, 0 < s, gamma < 1, g is an element of C(R, R), h is an element of L-2(R-3). We will prove the existence of at least two solutions using the Ekeland's variational principle, Mountain pass theorem and a Pohozaev type identity.
引用
收藏
页数:17
相关论文
共 50 条