Spatio-temporal probabilistic forecasting of wind power for multiple farms: A copula-based hybrid model

被引:19
|
作者
Arrieta-Prieto, Mario [1 ]
Schell, Kristen R. [2 ]
机构
[1] Univ Nacl Colombia, Dept Stat, Bogota 110131, Colombia
[2] Carleton Univ, Dept Mech & Aerosp Engn, Ottawa, ON K1S 5B6, Canada
关键词
Calibration; Sharpness; Skill scores; Support vector regression; Time series; Vine copula; TIME-SERIES ANALYSIS; CALIBRATION; PREDICTION; DEPENDENCE; AVERAGE;
D O I
10.1016/j.ijforecast.2021.05.013
中图分类号
F [经济];
学科分类号
02 ;
摘要
Accurate probabilistic forecasting of wind power output is critical to maximizing network integration of this clean energy source. There is a large literature on temporal modeling of wind power forecasting, but considerably less work combining spatial dependence into the forecasting framework. Through the careful consideration of the temporal modeling component, complemented by support vector regression of the temporal model residuals, this work demonstrates that a DVINE copula model most accurately represents the residual spatial dependence. Additionally, this work proposes a complete set of validation mechanisms for multi-h-step forecasts that, when considered together, comprehensively evaluate accuracy. The model and validation mechanisms are demonstrated in two case studies, totaling ten wind farms in the Texas electric grid. The proposed method outperforms baseline and competitive models, with an average Continuous Ranked Probability Score of less than 0.15 for individual farms, and an average Energy Score of less than 0.35 for multiple farms, over the 24-hour ahead horizon. Results show the model's ability to replicate the power output dynamics through calibrated and sharp predictive densities. (C) 2021 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:300 / 320
页数:21
相关论文
共 50 条
  • [31] Dynamic graph structure and spatio-temporal representations in wind power forecasting
    Zang, Peng
    Dong, Wenqi
    Wang, Jing
    Fu, Jianglong
    SCIENCE AND TECHNOLOGY FOR ENERGY TRANSITION, 2025, 80
  • [32] Spatio-temporal Markov chain model for very-short-term wind power forecasting
    Zhao, Yongning
    Ye, Lin
    Wang, Zheng
    Wu, Linlin
    Zhai, Bingxu
    Lan, Haibo
    Yang, Shihui
    JOURNAL OF ENGINEERING-JOE, 2019, (18): : 5018 - 5022
  • [33] Input wind speed forecasting for wind turbines based on spatio-temporal correlation
    Chen, Hang
    Wei, Shanbi
    Yang, Wei
    Liu, Shanchao
    RENEWABLE ENERGY, 2023, 216
  • [34] U-Convolutional model for spatio-temporal wind speed forecasting
    Bastos, Bruno Quaresma
    Cyrino Oliveira, Fernando Luiz
    Milidiu, Ruy Luiz
    INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (02) : 949 - 970
  • [35] RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting
    Pal, Soumyasundar
    Ma, Liheng
    Zhang, Yingxue
    Coates, Mark
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [36] Copula-based model for wind turbine power curve outlier rejection
    Wang, Yue
    Infield, David G.
    Stephen, Bruce
    Galloway, Stuart J.
    WIND ENERGY, 2014, 17 (11) : 1677 - 1688
  • [37] A dual spatio-temporal network for short-term wind power forecasting
    Lai, Zefeng
    Ling, Qiang
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 60
  • [38] Interpreting LASSO regression model by feature space matching analysis for spatio-temporal correlation based wind power forecasting
    Zhao, Yongning
    Zhao, Yuan
    Liao, Haohan
    Pan, Shiji
    Zheng, Yingying
    APPLIED ENERGY, 2025, 380
  • [39] Wind speed forecasting using spatio-temporal indicators
    Ohashi, Orlando
    Torgo, Luis
    20TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2012), 2012, 242 : 975 - 980
  • [40] A Unified Graph Formulation for Spatio-Temporal Wind Forecasting
    Bentsen, Lars odegaard
    Warakagoda, Narada Dilp
    Stenbro, Roy
    Engelstad, Paal
    ENERGIES, 2023, 16 (20)