The Black and Scholes equation with stochastic volatility. Variational methods

被引:0
|
作者
Achdou, Y
Tchou, N
机构
[1] Univ Paris 07, F-75251 Paris 5, France
[2] Univ Rennes 1, Irmar, F-35420 Rennes, France
关键词
D O I
10.1016/S0764-4442(01)01958-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a variational analysis and numerical simulations for a Black and Scholes equation with stochastic volatility. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:1031 / 1036
页数:6
相关论文
共 50 条
  • [1] Variational analysis for the Black and Scholes equation with stochastic volatility
    Achdou, Y
    Tchou, N
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (03): : 373 - 395
  • [2] The Black-Scholes equation in stochastic volatility models
    Ekstrom, Erik
    Tysk, Johan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (02) : 498 - 507
  • [3] Variational Formulation for Black-Scholes Equations in Stochastic Volatility Models
    Gyulov, Tihomir B.
    Valkov, Radoslav L.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12), 2012, 1497 : 257 - 264
  • [4] Finite-Volume Difference Scheme for the Black-Scholes Equation in Stochastic Volatility Models
    Chernogorova, Tatiana
    Valkov, Radoslav
    NUMERICAL METHODS AND APPLICATIONS, 2011, 6046 : 377 - 385
  • [5] A Logistic Black-Scholes Partial Differential Equation with Stochastic Volatility, Transaction Costs and Jumps
    Arnuphap, Kankullanat
    Thongtha, Dawud
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (01): : 57 - 74
  • [6] On the Stochastic Volatility in the Generalized Black-Scholes-Merton Model
    Ivanov, Roman V.
    RISKS, 2023, 11 (06)
  • [7] POLYNOMIAL CHAOS SOLUTION TO THE BLACK SCHOLES EQUATION WITH A RANDOM VOLATILITY
    Moon, Kyoung-Sook
    Kim, Hongjoong
    ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2012, 46 (02): : 173 - 191
  • [8] The Null Volatility Limit of the Chaotic Black-Scholes Equation
    Emamirad, H.
    Goldstein, G. R.
    Goldstein, J. A.
    Rogeon, P.
    SEMIGROUPS OF OPERATORS - THEORY AND APPLICATIONS, 2015, 113 : 155 - 164
  • [10] Correction to Black-Scholes Formula Due to Fractional Stochastic Volatility
    Garnier, Josselin
    Solna, Knut
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2017, 8 (01): : 560 - 588