Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting

被引:82
|
作者
Li, Xianglin [1 ]
Bassi, Prince Saurabh [2 ]
Boix, Pablo P. [1 ]
Fang, Yanan [1 ]
Wong, Lydia Helena [1 ,2 ]
机构
[1] Nanyang Technol Univ, Energy Res Inst, Singapore 637553, Singapore
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
关键词
photoelectrochemical cells (PEC); hematite; atomic layer deposition (ALD); nanorods; TiO2; surface treatment; ATOMIC LAYER DEPOSITION; FERRIC-OXIDE; OXIDATION; FILMS; ALPHA-FE2O3; FE2O3; PHOTOELECTROCHEMISTRY; PERFORMANCE; ELECTRODES; ARRAYS;
D O I
10.1021/acsami.5b01394
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ultrathin TiO2 is deposited on conventional hydrothermal grown hematite nanorod arrays by atomic layer deposition (ALD). Significant photoelectrochemical water oxidation performance improvement is observed when the ALD TiO2-treated samples are annealed at 650 degrees C or higher temperatures. The electrochemical impedance spectroscopy (EIS) study shows a surface trap-mediated charge transfer process exists at the hematite electrolyte interface. Thus, one possible reason for the improvement could be the increased surface states at the hematite surface, which leads to better charge separation, less electron hole recombination, and hence, greater improvement of photocurrent. Our Raman study shows the increase in surface defects on the ALD TiO2-coated hematite sample after being annealed at 650 degrees C or higher temperatures. A photo current of 1.9 mA cm(-2) at 1.23 V (vs RHE) with a maximum of 2.5 mA cm(-2) at 1.8 V (vs RHE) in 1 M NaOH under AM 1.5 simulated solar illumination is achieved in optimized deposition and annealing conditions.
引用
收藏
页码:16960 / 16966
页数:7
相关论文
共 50 条
  • [31] Surface states as electron transfer pathway enhanced charge separation in TiO2 nanotube water splitting photoanodes
    Zhu, Heng
    Zhao, Meiming
    Zhou, Junkang
    Li, Wenchao
    Wang, Haoyu
    Xu, Zhe
    Lu, Lei
    Pei, Lang
    Shi, Zhan
    Yan, Shicheng
    Li, Zhaosheng
    Zou, Zhigang
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 234 : 100 - 108
  • [32] Boosting hematite photoelectrochemical water splitting by decoration of TiO2 at the grain boundaries
    Feng, Fan
    Li, Can
    Jian, Jie
    Qiao, Xiaokang
    Wang, Hongqiang
    Jia, Lichao
    CHEMICAL ENGINEERING JOURNAL, 2019, 368 : 959 - 967
  • [33] High Solar Flux Concentration Water Splitting with Hematite ( α-Fe2O3) Photoanodes
    Segev, Gideon
    Dotan, Hen
    Malviya, Kirtiman Deo
    Kay, Asaf
    Mayer, Matthew T.
    Graetzel, Michael
    Rothschild, Avner
    ADVANCED ENERGY MATERIALS, 2016, 6 (01)
  • [34] Role of Cocatalysts on Hematite Photoanodes in Photoelectrocatalytic Water Splitting: Challenges and Future Perspectives
    Bedin, Karen C.
    Muche, Dereck N. F.
    Melo, Mauricio A., Jr.
    Freitas, Andre L. M.
    Goncalves, Renato V.
    Souza, Flavio L.
    CHEMCATCHEM, 2020, 12 (12) : 3156 - 3169
  • [35] TiO2 surface active sites for water splitting
    Nowotny, J.
    Bak, T.
    Nowotny, M. K.
    Sheppard, L. R.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (37): : 18492 - 18495
  • [36] Surface treatment of hematite photoanodes with zinc acetate for water oxidation
    Xi, Lifei
    Bassi, Prince Saurabh
    Chiam, Sing Yang
    Mak, Wai Fatt
    Tran, Phong D.
    Barber, James
    Loo, Joachim Say Chye
    Wong, Lydia Helena
    NANOSCALE, 2012, 4 (15) : 4430 - 4433
  • [37] Yttrium-doped hematite photoanodes for solar water splitting: Photoelectrochemical and electronic properties
    Kaambre, Tanel
    Vanags, Martins
    Parna, Rainer
    Kisand, Vambola
    Ignatans, Reinis
    Kleperis, Janis
    Sutka, Andris
    CERAMICS INTERNATIONAL, 2018, 44 (11) : 13218 - 13225
  • [38] Correlating flat band and onset potentials for solar water splitting on model hematite photoanodes
    Iandolo, Beniamino
    Zhang, Haixiang
    Wickman, Bjorn
    Zoric, Igor
    Conibeer, Gavin
    Hellman, Anders
    RSC ADVANCES, 2015, 5 (75): : 61021 - 61030
  • [39] Microwave-assisted fabrication of porous hematite photoanodes for efficient solar water splitting
    Hou, Yidong
    Zheng, Chong
    Zhu, Zezhou
    Wang, Xinchen
    CHEMICAL COMMUNICATIONS, 2016, 52 (42) : 6888 - 6891
  • [40] Dual-bonding interactions between MnO2 cocatalyst and TiO2 photoanodes for efficient solar water splitting
    Cheng, Xiang
    Dong, Guojun
    Zhang, Yajun
    Feng, Chenchen
    Bi, Yingpu
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 267