State of Charge Estimation of Battery Based on Neural Networks and Adaptive Strategies with Correntropy

被引:10
|
作者
Navega Vieira, Romulo [1 ]
Mauricio Villanueva, Juan Moises [1 ]
Sales Flores, Thommas Kevin [1 ]
Tavares de Macedo, Euler Cassio [1 ]
机构
[1] Fed Univ Paraiba UFPB, Elect Engn Dept DEE, Renewable & Alternat Energies Ctr CEAR, Campus 1, BR-58051900 Joao Pessoa, Brazil
关键词
estimation; state of charge; batteries; correntropy; cost function; Artificial Neural Networks; HEALTH ESTIMATION; OF-CHARGE; MODEL; PACK;
D O I
10.3390/s22031179
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Nowadays, electric vehicles have gained great popularity due to their performance and efficiency. Investment in the development of this new technology is justified by increased consciousness of the environmental impacts caused by combustion vehicles such as greenhouse gas emissions, which have contributed to global warming as well as the depletion of non-oil renewable energy source. The lithium-ion battery is an appropriate choice for electric vehicles (EVs) due to its promising features of high voltage, high energy density, low self-discharge, and long life cycles. In this context, State of Charge (SoC) is one of the vital parameters of the battery management system (BMS). Nevertheless, because the discharge and charging of battery cells requires complicated chemical operations, it is therefore hard to determine the state of charge of the battery cell. This paper analyses the application of Artificial Neural Networks (ANNs) in the estimation of the SoC of lithium batteries using the NASA's research center dataset. Normally, the learning of these networks is performed by some method based on a gradient, having the mean squared error as a cost function. This paper evaluates the substitution of this traditional function by a measure of similarity of the Information Theory, called the Maximum Correntropy Criterion (MCC). This measure of similarity allows statistical moments of a higher order to be considered during the training process. For this reason, it becomes more appropriate for non-Gaussian error distributions and makes training less sensitive to the presence of outliers. However, this can only be achieved by properly adjusting the width of the Gaussian kernel of the correntropy. The proper tuning of this parameter is done using adaptive strategies and genetic algorithms. The proposed identification model was developed using information for training and validation, using a dataset made available in a online repository maintained by NASA's research center. The obtained results demonstrate that the use of correntropy, as a cost function in the error backpropagation algorithm, makes the identification procedure using ANN networks more robust when compared to the traditional Mean Squared Error.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Estimation of battery state of charge based on changing window adaptive extended Kalman filtering
    Du, Jianhua
    Wang, Jiabin
    Tan, Birong
    Cao, Xin
    Qu, Chang
    Ou, Yingjie
    He, Xingfeng
    Xiong, Leji
    Tu, Ran
    JOURNAL OF ENERGY STORAGE, 2024, 103
  • [22] BATTERY STATE OF CHARGE ESTIMATION USING AN ARTIFICIAL NEURAL NETWORK
    Ismail, Mahmoud
    Dlyma, Rioch
    Elrakaybi, Ahmed
    Ahmed, Ryan
    Habibi, Saeid
    2017 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2017, : 342 - 349
  • [23] State of charge estimation of lithium-ion battery based on improved Hausdorff gradient using wavelet neural networks
    Sun, Siqi
    Gao, Zhe
    Jia, Kai
    JOURNAL OF ENERGY STORAGE, 2023, 64
  • [24] State of Charge Estimation of Battery in Low Power States Based on Chaotic Neural Network
    Li, Jianhua
    Liu, Mingsheng
    Wen, Hongnian
    Xu, Aixue
    2ND INTERNATIONAL CONFERENCE ON GREEN ENERGY AND SUSTAINABLE DEVELOPMENT (GESD 2019), 2019, 2122
  • [25] Battery state-of-charge estimation based on chaos immune evolutionary neural network
    Cheng, Bo
    Han, Lin
    Guo, Zhen-Yu
    Wang, Jun-Ping
    Cao, Bing-Gang
    Xitong Fangzhen Xuebao / Journal of System Simulation, 2008, 20 (11): : 2889 - 2892
  • [26] State of charge estimation for Li-ion batteries based on iterative Kalman filter with adaptive maximum correntropy criterion
    Liu, Zheng
    Zhao, Zhenhua
    Qiu, Yuan
    Jing, Benqin
    Yang, Chunshan
    JOURNAL OF POWER SOURCES, 2023, 580
  • [27] Robust optimal estimation over networks: Application to battery state of charge estimation
    Zhang, Yiming
    Sircoulomb, Vincent
    Langlois, Nicolas
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (12) : 2513 - 2528
  • [28] Robust battery state of charge estimation incorporating modified correntropy Kalman filter with adaptive kernel width and weighted multi-innovation compensation
    Liu, Zheng
    Yao, Linfeng
    Huang, Wenjing
    Jiang, Yanjun
    Qiu, Siyuan
    Tang, Xiaofeng
    ENERGY, 2025, 322
  • [29] Design of adaptive H∞ filter for implementing on state-of-charge estimation based on battery state-of-charge-varying modelling
    Charkhgard, Mohammad
    Zarif, Mohammad Haddad
    IET POWER ELECTRONICS, 2015, 8 (10) : 1825 - 1833
  • [30] Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
    Zheng Hong
    Liu Xu
    Wei Min
    CHINESE PHYSICS B, 2015, 24 (09)