A benchmark for the surface Cahn-Hilliard equation

被引:7
|
作者
Raetz, Andreas [1 ]
机构
[1] TU Dortmund, Vogelpothsweg 87, Dortmund, Germany
关键词
Cahn-Hilliard; Free boundary problem; Diffuse interface; Finite elements; FINITE-ELEMENT APPROXIMATION; MEMBRANES; DYNAMICS; PDES;
D O I
10.1016/j.aml.2015.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the surface Cahn-Hilliard equation, an often used model for spinodal decomposition and coarsening effects on surfaces. As the width of the diffuse interface shrinks to zero one expects a convergence towards a surface Hele-Shaw model. While results from formal matched asymptotic expansions confirm this conjecture, a numerical reproduction of this asymptotic behavior has not been provided, yet. It is the purpose of this contribution, to fill this gap and present a rotationally symmetric example on the standard sphere, where analytic expressions for the surface Hele-Shaw model allow a comparison with numerical results for the surface Cahn-Hilliard equation. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 50 条
  • [21] On the Cahn-Hilliard equation with degenerate mobility
    Elliott, CM
    Garcke, H
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) : 404 - 423
  • [22] THE DYNAMICS OF NUCLEATION FOR THE CAHN-HILLIARD EQUATION
    BATES, PW
    FIFE, PC
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (04) : 990 - 1008
  • [23] Cahn-Hilliard equation with regularization term
    Mheich, Rim
    ASYMPTOTIC ANALYSIS, 2023, 133 (04) : 499 - 533
  • [24] Some generalizations of the Cahn-Hilliard equation
    Miranville, A
    ASYMPTOTIC ANALYSIS, 2000, 22 (3-4) : 235 - 259
  • [25] Evolving surface finite element method for the Cahn-Hilliard equation
    Elliott, Charles M.
    Ranner, Thomas
    NUMERISCHE MATHEMATIK, 2015, 129 (03) : 483 - 534
  • [26] The Cahn-Hilliard Equation with Logarithmic Potentials
    Cherfils, Laurence
    Miranville, Alain
    Zelik, Sergey
    MILAN JOURNAL OF MATHEMATICS, 2011, 79 (02) : 561 - 596
  • [27] A Note on the Viscous Cahn-Hilliard Equation
    柯媛元
    尹景学
    NortheasternMathematicalJournal, 2004, (01) : 101 - 108
  • [28] The Cahn-Hilliard Equation with Logarithmic Potentials
    Laurence Cherfils
    Alain Miranville
    Sergey Zelik
    Milan Journal of Mathematics, 2011, 79 : 561 - 596
  • [29] Bubbles interactions in the Cahn-Hilliard equation
    Calisto, H
    Clerc, M
    Rojas, R
    Tirapegui, E
    PHYSICAL REVIEW LETTERS, 2000, 85 (18) : 3805 - 3808
  • [30] Curve and Surface Smoothing Using a Modified Cahn-Hilliard Equation
    Choi, Yongho
    Jeong, Darea
    Kim, Junseok
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017