A benchmark for the surface Cahn-Hilliard equation

被引:7
|
作者
Raetz, Andreas [1 ]
机构
[1] TU Dortmund, Vogelpothsweg 87, Dortmund, Germany
关键词
Cahn-Hilliard; Free boundary problem; Diffuse interface; Finite elements; FINITE-ELEMENT APPROXIMATION; MEMBRANES; DYNAMICS; PDES;
D O I
10.1016/j.aml.2015.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the surface Cahn-Hilliard equation, an often used model for spinodal decomposition and coarsening effects on surfaces. As the width of the diffuse interface shrinks to zero one expects a convergence towards a surface Hele-Shaw model. While results from formal matched asymptotic expansions confirm this conjecture, a numerical reproduction of this asymptotic behavior has not been provided, yet. It is the purpose of this contribution, to fill this gap and present a rotationally symmetric example on the standard sphere, where analytic expressions for the surface Hele-Shaw model allow a comparison with numerical results for the surface Cahn-Hilliard equation. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 50 条
  • [1] ON THE CAHN-HILLIARD EQUATION
    ELLIOTT, CM
    ZHENG, SM
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 96 (04) : 339 - 357
  • [2] A Simple Benchmark Problem for the Numerical Methods of the Cahn-Hilliard Equation
    Li, Yibao
    Lee, Chaeyoung
    Wang, Jian
    Yoon, Sungha
    Park, Jintae
    Kim, Junseok
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [3] Stochastic Cahn-Hilliard equation
    DaPrato, G
    Debussche, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (02) : 241 - 263
  • [4] Solutions of the Cahn-Hilliard equation
    Ugurlu, Yavuz
    Kaya, Dogan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) : 3038 - 3045
  • [5] ON THE STOCHASTIC CAHN-HILLIARD EQUATION
    ELEZOVIC, N
    MIKELIC, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (12) : 1169 - 1200
  • [6] The convective Cahn-Hilliard equation
    Eden, A.
    Kalantarov, V. K.
    APPLIED MATHEMATICS LETTERS, 2007, 20 (04) : 455 - 461
  • [7] Benchmark Problems for the Numerical Discretization of the Cahn-Hilliard Equation with a Source Term
    Yoon, Sungha
    Lee, Hyun Geun
    Li, Yibao
    Lee, Chaeyoung
    Park, Jintae
    Kim, Sangkwon
    Kim, Hyundong
    Kim, Junseok
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [8] SPECIAL CASE OF THE CAHN-HILLIARD EQUATION
    Frolovskaya, O. A.
    Admaev, O. V.
    Pukhnachev, V. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 324 - 334
  • [9] A new formulation of the Cahn-Hilliard equation
    Miranville, A
    Piétrus, A
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (02) : 285 - 307
  • [10] Pulled fronts in the Cahn-Hilliard equation
    Malomed, BA
    Frantzeskakis, DJ
    Nistazakis, HE
    Yannacopoulos, AN
    Kevrekidis, PG
    PHYSICS LETTERS A, 2002, 295 (5-6) : 267 - 272