Schrodinger Equation with Asymptotically Linear Nonlinearities

被引:5
|
作者
El-Abed, Amel [1 ,2 ]
Ben Ali, Abir Amor [3 ]
Dammak, Makkia [1 ,4 ,5 ]
机构
[1] Taibah Univ, Dept Math, Coll Sci, Medina, Saudi Arabia
[2] Tanta Univ, Fac Sci, Dept Math, Tanta, Egypt
[3] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Tunis, Tunisia
[4] Univ Sfax, Fac Sci, Dept Math, Sfax, Tunisia
[5] Univ Tunis El Manar, Fac Sci Tunis, Nonlinear Anal & Geometr Lab LR21ES08, Tunis, Tunisia
关键词
Asymptotically linear; variational method; Schrodinger equations; Cerami sequence; BIFURCATION PROBLEM; EXISTENCE; CONVEX;
D O I
10.2298/FIL2202629E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a quasilinear Schrodinger problem under Dirichlet boundary condi-tion in a regular domain with asymptotically linear nonlinearities. We use Cerami version of the mountain pass theorem to prove the existence of solution without using the Ambrosetti-Rabionovitz condition or any of its refinements. Then, we prove that the same techniques work when the nonlinearity is superlinear and subcritical at infinity.
引用
收藏
页码:629 / 639
页数:11
相关论文
共 50 条
  • [21] A POSITIVE BOUND STATE FOR AN ASYMPTOTICALLY LINEAR OR SUPERLINEAR SCHRODINGER EQUATION IN EXTERIOR DOMAINS
    Khatib, Alireza
    Maia, Liliane A.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (06) : 2789 - 2812
  • [22] Asymptotically linear fractional Schrodinger equations
    Lehrer, Raquel
    Maia, Liliane A.
    Squassina, Marco
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (04) : 529 - 558
  • [23] SINGULAR ELLIPTIC SYSTEMS WITH ASYMPTOTICALLY LINEAR NONLINEARITIES
    Hai, D. D.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2013, 26 (7-8) : 837 - 844
  • [24] Choquard type equations with asymptotically linear nonlinearities
    Furtado, Marcelo F.
    da Silva, Edcarlos D.
    Severo, Uberlandio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (01):
  • [25] SIGN-CHANGING SOLUTIONS FOR AN ASYMPTOTICALLY LINEAR SCHRODINGER EQUATION WITH DEEPENING POTENTIAL WELL
    Liu, Xiangqing
    Huang, Yisheng
    Liu, Jiaquan
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2011, 16 (1-2) : 1 - 30
  • [26] On the Schrodinger equation with dissipative nonlinearities of derivative type
    Hayashi, Nakao
    Naumkin, Pavel I.
    Sunagawa, Hideaki
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (01) : 278 - 291
  • [27] A positive solution of asymptotically periodic Schrodinger equations with local superlinear nonlinearities
    Li, Gui-Dong
    Li, Yong-Yong
    Tang, Chun-Lei
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (30) : 1 - 15
  • [28] Global bifurcation for asymptotically linear Schrodinger equations
    Genoud, Francois
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (01): : 23 - 35
  • [29] Kirchhoff elliptic problems with asymptotically linear or superlinear nonlinearities
    Furtado, Marcelo F.
    Silva, Edcarlos D.
    Severo, Uberlandio B.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06):
  • [30] Multiple Solutions for Biharmonic Equations with Asymptotically Linear Nonlinearities
    Pei, Ruichang
    BOUNDARY VALUE PROBLEMS, 2010,