Retrieval of Forest Structural Parameters from Terrestrial Laser Scanning: A Romanian Case Study

被引:7
|
作者
Pascu, Ionut-Silviu [1 ,2 ]
Dobre, Alexandru-Claudiu [1 ,2 ]
Badea, Ovidiu [1 ,2 ]
Tanase, Mihai Andrei [3 ]
机构
[1] Marin Dracea Romanian Natl Inst Res & Dev Forestr, Dept Forest Monitoring, 128 Eroilor Blvd, Voluntari 077190, Ilfov, Romania
[2] Transilvania Univ, Fac Silviculture & Forest Engn, Dept Forest Engn Forest Management Planning & Ter, 1 Ludwig Beethoven Str, Brasov 500123, Romania
[3] Univ Alcala, Dept Geol Geog & Environm, 2 C Colegios, Alcala De Henares 28801, Spain
来源
FORESTS | 2020年 / 11卷 / 04期
关键词
TLS; single scan; multiple scans; biophysical parameters; TREE HEIGHT; ATTRIBUTES; TLS;
D O I
10.3390/f11040392
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Research Highlights: The present study case investigates the differences occurring when tree's biophysical parameters are extracted through single and multiple scans. Scan sessions covered mountainous and hill regions of the Carpathian forests. Background and Objectives: We focused on analyzing stems, as a function of diameter at breast height (DBH) and the total height (H), at sample plot level for natural forests, with the purpose of assessing the potential for transitioning available methodology to field work in Romania. Materials and Methods: We performed single and multiple scans using a FARO Focus 3D X130 phase shift terrestrial laser scanner at 122 kpts and 0.3:0.15 mm noise compression ratio, resulting in an average point density of 6pts at 10m. The point cloud we obtained underpinned the DBH and heights analysis. In order to reach values similar to those measured in the field, we used both the original and the segmented point clouds, postprocessed in subsamples of different radii. Results: Pearson's correlation coefficient above 0.8 for diameters showed high correlation with the field measurements. Diameter averages displayed differences within tolerances (0.02 m) for 10 out of 12 plots. Height analysis led to poorer results. For both acquisition methods, the values of the correlation coefficient peaked at 0.6. The initial hypothesis that trees positioned at a distance equivalent to their height can be measured more precise, was not valid; no increase in correlation strength was visible for either heights or diameters as the distance from scanner varied (r = 0.52). Conclusions: With regard to tree biophysical parameters extraction, the acquisition method has no major influence upon visible trees. We emphasize the term "visible", as an increase in the number of acquisitions led to an increased number of detected trees (16% in old stands and 29% in young stands).
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Terrestrial Laser Scanning to Detect Liana Impact on Forest Structure
    Moorthy, Sruthi M. Krishna
    Calders, Kim
    di Porcia e Brugnera, Manfredo
    Schnitzer, Stefan A.
    Verbeeck, Hans
    REMOTE SENSING, 2018, 10 (06)
  • [32] Terrestrial Laser Scanning for Plot-Scale Forest Measurement
    Newnham, Glenn J.
    Armston, John D.
    Calders, Kim
    Disney, Mathias I.
    Lovell, Jenny L.
    Schaaf, Crystal B.
    Strahler, Alan H.
    Danson, F. Mark
    CURRENT FORESTRY REPORTS, 2015, 1 (04): : 239 - 251
  • [33] Bibliometric Insights into Terrestrial Laser Scanning for Forest Biomass Estimation
    Compean-Aguirre, Jorge Luis
    Lopez-Serrano, Pablito Marcelo
    ECOLOGIES, 2024, 5 (03): : 470 - 490
  • [34] Terrestrial laser scanning: a new standard of forest measuring and modelling?
    Akerblom, Markku
    Kaitaniemi, Pekka
    ANNALS OF BOTANY, 2021, 128 (06) : 653 - 661
  • [35] International benchmarking of terrestrial laser scanning approaches for forest inventories
    Liang, Xinlian
    Hyyppa, Juha
    Kaartinen, Harri
    Lehtomaki, Matti
    Pyorala, Jiri
    Pfeifer, Norbert
    Holopainen, Markus
    Brolly, Gabor
    Pirotti, Francesco
    Hackenberg, Jan
    Huang, Huabing
    Jo, Hyun-Woo
    Katoh, Masato
    Liu, Luxia
    Mokros, Martin
    Morel, Jules
    Olofsson, Kenneth
    Poveda-Lopez, Jose
    Trochta, Jan
    Wang, Di
    Wang, Jinhu
    Xi, Zhouxi
    Yang, Bisheng
    Zheng, Guang
    Kankare, Ville
    Luoma, Ville
    Yu, Xiaowei
    Chen, Liang
    Vastaranta, Mikko
    Saarinen, Ninni
    Wang, Yunsheng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 144 : 137 - 179
  • [36] Single tree species classification from Terrestrial Laser Scanning data for forest inventory
    Othmani, Ahlem
    Voon, Lew F. C. Lew Yan
    Stolz, Christophe
    Piboule, Alexandre
    PATTERN RECOGNITION LETTERS, 2013, 34 (16) : 2144 - 2150
  • [37] Evaluation of Forest Canopy and Understory Gap Fraction Derived from Terrestrial Laser Scanning
    Chen, K. C.
    Wang, C. K.
    XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 41 (B8): : 589 - 591
  • [38] Optimal bucking of stems from terrestrial laser scanning data to maximize forest value
    Prendes, Covadonga
    Acuna, Mauricio
    Canga, Elena
    Ordonez, Celestino
    Cabo, Carlos
    SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 2023, 38 (03) : 174 - 188
  • [39] Retrieval of Aerodynamic Parameters in Rubber Tree Forests Based on the Computer Simulation Technique and Terrestrial Laser Scanning Data
    Huang, Zhixian
    Huang, Xiao
    Fan, Jiangchuan
    Eichhorn, Markus
    An, Feng
    Chen, Bangqian
    Cao, Lin
    Zhu, Zhengli
    Yun, Ting
    REMOTE SENSING, 2020, 12 (08)
  • [40] A new index of forest structural heterogeneity using tree architectural attributes measured by terrestrial laser scanning
    Reich, Karl Friedrich
    Kunz, Matthias
    von Oheimb, Goddert
    ECOLOGICAL INDICATORS, 2021, 133