Equipartite edge colouring of multigraphs

被引:0
|
作者
Gionfriddo, Mario [1 ]
Amato, Alberto [1 ]
Ragusa, Giorgio [1 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G=(V,E) be a multigraph, without loops. For every vertex x, let Ex be the set of the edges of G that are incident to x. An edge colouring f of G is said to be an h-eguipartite edge colouring of G, for a fixed h is an element of N, h >= 2, if for every x is an element of V such that vertical bar E(x vertical bar) = hq(x) + r(x), 0 <= r(x) < h, there exists a partition of E(x) in q(x) colour classes of cardinality h and one colour class of cardinality r(x). The maximum number k for which there exists an h-equipartite edge k-colouring of G is denoted (chi)over bar(h) (G). In this paper we prove some results for 2-equipartite edge colourings. In particular we calculate (chi)over bar(2) (G) when G is a complete graph or a complete bipartite graph. This paper can be considered as a continuation of [5].
引用
收藏
页码:297 / 304
页数:8
相关论文
共 50 条
  • [31] Strong edge colouring of subcubic graphs
    Hocquard, Herve
    Valicov, Petru
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (15) : 1650 - 1657
  • [32] Acyclic edge colouring of outerplanar graphs
    Muthu, Rahul
    Narayanan, N.
    Subramanian, C. R.
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, PROCEEDINGS, 2007, 4508 : 144 - +
  • [33] Fast parallel edge colouring of graphs
    Sajith, G
    Saxena, S
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2003, 63 (09) : 775 - 785
  • [34] EDGE-COLOURING RANDOM GRAPHS
    FRIEZE, AM
    JACKSON, B
    MCDIARMID, CJH
    REED, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 45 (02) : 135 - 149
  • [35] On edge-colouring indifference graphs
    deFigueiredo, CMH
    Meidanis, J
    deMello, CP
    THEORETICAL COMPUTER SCIENCE, 1997, 181 (01) : 91 - 106
  • [36] Improved bounds on acyclic edge colouring
    Muthu, Rahul
    Narayanan, N.
    Subramanian, C. R.
    DISCRETE MATHEMATICS, 2007, 307 (23) : 3063 - 3069
  • [37] A note on connected greedy edge colouring
    Bonamy, Marthe
    Groenland, Carla
    Muller, Carole
    Narboni, Jonathan
    Pekarek, Jakub
    Wesolek, Alexandra
    DISCRETE APPLIED MATHEMATICS, 2021, 304 (304) : 129 - 136
  • [38] Matching, edge-colouring, dimers
    Schrijver, A
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2003, 2880 : 13 - 22
  • [39] Applications of Edge Colouring of Fuzzy Graphs
    Mahapatra, Rupkumar
    Samanta, Sovan
    Pal, Madhumangal
    INFORMATICA, 2020, 31 (02) : 313 - 330
  • [40] Edge colouring reduced indifference graphs
    de Figueiredo, CMH
    de Mello, CP
    Ortiz, C
    LATIN 2000: THEORETICAL INFORMATICS, 2000, 1776 : 145 - 153