Equipartite edge colouring of multigraphs

被引:0
|
作者
Gionfriddo, Mario [1 ]
Amato, Alberto [1 ]
Ragusa, Giorgio [1 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G=(V,E) be a multigraph, without loops. For every vertex x, let Ex be the set of the edges of G that are incident to x. An edge colouring f of G is said to be an h-eguipartite edge colouring of G, for a fixed h is an element of N, h >= 2, if for every x is an element of V such that vertical bar E(x vertical bar) = hq(x) + r(x), 0 <= r(x) < h, there exists a partition of E(x) in q(x) colour classes of cardinality h and one colour class of cardinality r(x). The maximum number k for which there exists an h-equipartite edge k-colouring of G is denoted (chi)over bar(h) (G). In this paper we prove some results for 2-equipartite edge colourings. In particular we calculate (chi)over bar(2) (G) when G is a complete graph or a complete bipartite graph. This paper can be considered as a continuation of [5].
引用
收藏
页码:297 / 304
页数:8
相关论文
共 50 条
  • [1] An edge colouring of multigraphs
    Gionfriddo, Mario
    Amato, Alberto
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2007, 15 (02) : 212 - 216
  • [2] Resolvable cycle decompositions of complete multigraphs and complete equipartite multigraphs via layering and detachment
    Bahmanian, Amin
    Sajna, Mateja
    JOURNAL OF COMBINATORIAL DESIGNS, 2021, 29 (10) : 647 - 682
  • [3] AVD-total-colouring of complete equipartite graphs
    Luiz, Atilio G.
    Campos, C. N.
    de Mello, C. P.
    DISCRETE APPLIED MATHEMATICS, 2015, 184 : 189 - 195
  • [4] Decomposing Complete Equipartite Multigraphs into Cycles of Variable Lengths: The Amalgamation-detachment Approach
    Bahmanian, M. Amin
    Sajna, Mateja
    JOURNAL OF COMBINATORIAL DESIGNS, 2016, 24 (04) : 165 - 183
  • [5] Partitions and edge colourings of multigraphs
    Kostochka, Alexandr V.
    Stiebitz, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [6] Adaptable and conflict colouring multigraphs with no cycles of length three or four
    Aliaj, Jurgen
    Molloy, Michael
    JOURNAL OF GRAPH THEORY, 2023, 104 (01) : 188 - 219
  • [7] Edge-coloring of multigraphs
    Kochol, M
    Krivonaková, N
    Smejová, S
    DISCRETE MATHEMATICS, 2005, 300 (1-3) : 229 - 234
  • [8] Edge covered critical multigraphs
    Xu, Changqing
    Liu, Guizhen
    DISCRETE MATHEMATICS, 2008, 308 (24) : 6348 - 6354
  • [9] A theorem in edge colouring
    Cariolaro, David
    DISCRETE MATHEMATICS, 2009, 309 (12) : 4208 - 4209
  • [10] Edge colouring with delays
    Alon, Noga
    Asodi, Vera
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (02): : 173 - 191