Let G=(V,E) be a multigraph, without loops. For every vertex x, let Ex be the set of the edges of G that are incident to x. An edge colouring f of G is said to be an h-eguipartite edge colouring of G, for a fixed h is an element of N, h >= 2, if for every x is an element of V such that vertical bar E(x vertical bar) = hq(x) + r(x), 0 <= r(x) < h, there exists a partition of E(x) in q(x) colour classes of cardinality h and one colour class of cardinality r(x). The maximum number k for which there exists an h-equipartite edge k-colouring of G is denoted (chi)over bar(h) (G). In this paper we prove some results for 2-equipartite edge colourings. In particular we calculate (chi)over bar(2) (G) when G is a complete graph or a complete bipartite graph. This paper can be considered as a continuation of [5].
机构:
Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, ItalyUniv Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
机构:
Illinois State Univ, Dept Math, Stevenson Hall 313,Campus Box 4520, Normal, IL 61790 USAIllinois State Univ, Dept Math, Stevenson Hall 313,Campus Box 4520, Normal, IL 61790 USA
Bahmanian, M. Amin
Sajna, Mateja
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ottawa, Dept Math & Stat, 585 King Edward Ave, Ottawa, ON K1N 6N5, CanadaIllinois State Univ, Dept Math, Stevenson Hall 313,Campus Box 4520, Normal, IL 61790 USA
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Math, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Math, IL-69978 Tel Aviv, Israel
Alon, Noga
Asodi, Vera
论文数: 0引用数: 0
h-index: 0
机构:Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Math, IL-69978 Tel Aviv, Israel