Effect of Methylamine, Amylamine, and Decylamine on the Formation and Dissociation Kinetics of CO2 Hydrate Relevant for Carbon Dioxide Sequestration

被引:26
|
作者
Sahu, Chandan [1 ,2 ]
Sircar, Anirbid [3 ]
Sangwai, Jitendra S. [1 ]
Kumar, Rajnish [2 ,4 ]
机构
[1] Indian Inst Technol Madras, Gas Hydrate & Flow Assurance Lab, Petr Engn Program, Dept Ocean Engn,Dept Chem Engn, Chennai 600036, Tamil Nadu, India
[2] Indian Inst Technol Madras, Ctr Excellence Carbon Dioxide Capture Utilizat &, Chennai 600036, Tamil Nadu, India
[3] Pandit Deendayal Petr Univ, Sch Petr Technol, Gandhinagar 382007, Gujarat, India
[4] Indian Inst Technol Madras, Dept Chem Engn, Chennai 600036, Tamil Nadu, India
关键词
GAS HYDRATE; NATURAL-GAS; PHASE-EQUILIBRIA; SUBSEABED DISPOSAL; ACTIVATED CARBON; LIQUID CO2; FLUE-GAS; STORAGE; CAPTURE; WATER;
D O I
10.1021/acs.iecr.1c04074
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Gas hydrates have been the nucleus of research from a sustainable engineering standpoint, considering their unique applications in a broad spectrum of scientific contexts. One such application is the sequestration of gaseous CO2 as solid hydrates under the seabed. Low temperature and high pressure are prevalent below the seabed, making it a thermodynamically feasible process. Furthermore, improved CO2 hydrate kinetics will facilitate technological development for carbon capture, storage, and sequestration. This study focuses on comprehending the CO2 hydrate kinetics with organic aliphatic amines, particularly methylamine, amylamine, and decylamine. Additives were tested in concentrations of 0.1, 1, and 5 wt % to meticulously comprehend their impact. A 300 mL stirred tank reactor was used for the investigations at 3.5 MPa and 274.55 K with pure water, which are the typical temperature and pressure conditions that one encounters in shallow subsea sediments. All additives showed considerable promotion in induction time, assuring faster CO2 hydrate nucleation. In addition, decylamine resulted in faster uptake of CO2 in our experiments compared to the other two additives. Hydrate dissociation studies up to 293.15 K were performed to assess the effect of the considered additives on CO2 hydrate dissociation. The decylamine system also delayed the gas release rate, showing better stability than the pure water system. This study also proposes a suitable well design for enhanced subsea CO2 sequestration as solid hydrates.
引用
收藏
页码:2672 / 2684
页数:13
相关论文
共 50 条
  • [21] Thermodynamic Conditions of Formation of CO2 Hydrate in Carbon Dioxide Injection into a Methane Hydrate Reservoir
    G. G. Tsypkin
    Fluid Dynamics, 2018, 53 : 680 - 689
  • [22] Insights on CO2 Hydrate Formation and Dissociation Kinetics of Amino Acids in a Brine Solution
    Rehman, Amirun Nissa
    Bavoh, Cornelius B.
    Lal, Bhajan
    Sabil, Khalik M.
    Sangwai, Jitendra S.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (37) : 13863 - 13876
  • [23] TECHNO-ECONOMIC MODELING OF CO2 HYDRATE SLURRY FORMATION FOR CARBON SEQUESTRATION
    Bahadur, Vaibhav
    Bhati, Awan
    PROCEEDINGS OF ASME 2024 18TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, ES2024, 2024,
  • [24] KINETICS AND MECHANISM OF THE FORMATION OF CO2 HYDRATE
    SHINDO, Y
    LUND, PC
    FUJIOKA, Y
    KOMIYAMA, H
    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 1993, 25 (09) : 777 - 782
  • [25] The effect of CO2-air mixture compositions on the formation and dissociation of CO2 hydrate
    Haneda, H
    Komai, T
    Yamamoto, Y
    GAS HYDRATES: CHALLENGES FOR THE FUTURE, 2000, 912 : 261 - 271
  • [26] CARBON DIOXIDE DISSOCIATION IN A CO2 LASER
    GASILEVICH, ES
    IVANOV, VA
    LOTKOVA, EN
    OCHKIN, VN
    SOBOLEV, NN
    YAROSLAV.NG
    SOVIET PHYSICS TECHNICAL PHYSICS-USSR, 1969, 14 (01): : 86 - +
  • [27] Dissociation kinetics of methane hydrate and CO2 hydrate for different granular composition
    Misyura, S. Y.
    Donskoy, I. G.
    FUEL, 2020, 262 (262)
  • [28] Evaluation of the synergic effect of amino acids for CO2 hydrate formation and dissociation
    Almashwali, Abdulrab Abdulwahab
    Jee, Samson Foo Kong
    Lal, Bhajan
    GAS SCIENCE AND ENGINEERING, 2024, 131
  • [29] CO2 Hydrate Formation Kinetics and Morphology Observations Using High-Pressure Liquid CO2 Applicable to Sequestration
    Qureshi, M. Fahed
    Dhamu, Vikas
    Usadi, Adam
    Barckholtz, Timothy A.
    Mhadeshwar, Ashish B.
    Linga, Praveen
    ENERGY & FUELS, 2022, 36 (18) : 10627 - 10641
  • [30] Diffusion of carbon dioxide in formation water as a result of CO2 enhanced oil recovery and CO2 sequestration
    Zarghami S.
    Boukadi F.
    Al-Wahaibi Y.
    Al-Wahaibi, Yahya (ymn@squ.edu.om), 1600, Springer Verlag (07): : 161 - 168