Modeling of Nonstationary Distributed Processes on the Basis of Multidimensional Time Series

被引:2
|
作者
Matveev, M. G. [1 ]
Kopytin, A. V. [1 ]
Sirota, E. A. [1 ]
Kopytina, E. A. [1 ]
机构
[1] Voronezh State Univ, 1 Univ Skaya Sq, Voronezh 394018, Russia
关键词
Partial Differential Equations; Structural Identification; Parametric Identification; Multidimensional Autoregression; Statistical Hypotheses;
D O I
10.1016/j.proeng.2017.09.643
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A method for identifying the equations of mathematical physics describing the dynamics of spatially-distributed processes on the basis of experimental multidimensional time series is proposed. The method includes the LSM (Least square method) estimates of the parameters of multidimensional autoregression and the construction of versions of systems of algebraic equations connecting the estimates of autoregression and the parameters of the corresponding differential equations. The system of algebraic equations satisfied by the obtained estimates determines the structure of the model and the corresponding values of the parameters of differential equation. A numerical example of identifying the processes of changing the temperature of atmospheric air is given. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:511 / 516
页数:6
相关论文
共 50 条
  • [21] Adaptive AR modeling of nonstationary time series by means of Kalman filtering
    Arnold, M
    Miltner, WHR
    Witte, H
    Bauer, R
    Braun, C
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1998, 45 (05) : 553 - 562
  • [22] Time series modeling using ARM processes
    Melamed, B
    ESM'99 - MODELLING AND SIMULATION: A TOOL FOR THE NEXT MILLENNIUM, VOL 1, 1999, : 69 - 76
  • [23] Spartan random processes in time series modeling
    Zukovic, A.
    Hristopulos, D. T.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (15) : 3995 - 4001
  • [24] Nonstationary time series identification
    Chen, H.-F., 1600, (17): : 8 - 9
  • [25] Outliers in Nonstationary Time Series
    Chan W.-S.
    Journal of Quantitative Economics, 2006, 4 (2) : 75 - 83
  • [26] Forecasting nonstationary time series
    Gatarek, Lukasz T. T.
    Welfe, Aleksander
    JOURNAL OF FORECASTING, 2023, 42 (07) : 1930 - 1949
  • [27] NONSTATIONARY TIME-SERIES ANALYSIS OF DYNAMICAL PROCESSES IN MOLECULES AND CONDENSED PHASES
    BORRMANN, A
    LI, ZM
    MARTENS, CC
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 207 : 248 - PHYS
  • [28] Predicting nonstationary time series with multi-scale Gaussian processes model
    Zhou, Yatong
    Zhang, Taiyi
    Li, Xiaohe
    NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2006, 4232 : 513 - 520
  • [29] Based on hypernetworks and multifractals: Deep distribution feature fusion for multidimensional nonstationary time series prediction
    Shen, Yuewen
    Wen, Lihong
    Shen, Chaowen
    CHAOS SOLITONS & FRACTALS, 2024, 182
  • [30] A dynamic regularized radial basis function network for nonlinear, nonstationary time series prediction
    Yee, P
    Haykin, S
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (09) : 2503 - 2521