On a hypersurface of a Matsumoto space

被引:0
|
作者
Singh, UP [1 ]
Kumari, B [1 ]
机构
[1] DDU Gorakhpur Univ, Dept Math & Stat, Gorakhpur, Uttar Pradesh, India
来源
关键词
hypersurface; Matsumoto space; Randers space; Finsler space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1985, Matsumoto(6) discussed the properties of special hypersurface of Randers space with b(i)(x)= partial derivative (i)b being the gradient of a scalar function b(x). He has considered a hypersurface which is given by b(x) = constant. In this paper, we have considered the hypersurface of Matsumoto space with the same equation b(x) = constant. The conditions under which this hypersurface be a hyperplane of the first or second kinds have been obtained. This hypersurface is not a hyper-plane of third kind.
引用
收藏
页码:521 / 531
页数:11
相关论文
共 50 条
  • [31] Catacaustics of a Hypersurface in the Euclidean n-Space
    Yampolsky, Alexander
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (04)
  • [32] ON HYPERSURFACE-HOMOGENEOUS SPACE-TIMES
    HAJJBOUTROS, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (09) : 2297 - 2301
  • [33] ON A PROJECTIVELY MINIMAL HYPERSURFACE IN THE UNIMODULAR AFFINE SPACE
    SASAKI, T
    GEOMETRIAE DEDICATA, 1987, 23 (02) : 237 - 251
  • [34] Catacaustics of a Hypersurface in the Euclidean n-Space
    Alexander Yampolsky
    Mediterranean Journal of Mathematics, 2019, 16
  • [35] Matsumoto-Yor Process and Infinite Dimensional Hyperbolic Space
    Bougerol, Philippe
    IN MEMORIAM MARC YOR - SEMINAIRE DE PROBABILITES XLVII, 2015, 2137 : 521 - 559
  • [36] Hypersurface homogeneous Killing spinor space-times
    Van den Bergh, N.
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (02)
  • [37] Quadric Hypersurface Intersection for Manifold Learning in Feature Space
    Pavutnitskiy, Fedor
    Klochkov, Artem
    Ivanov, Sergei O.
    Vialov, Viktor
    Abramov, Evgeny
    Zaikovskii, Anatolii
    Borovitskiy, Viacheslav
    Petiushko, Aleksandr
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [38] The homogeneous ruled real hypersurface in a complex hyperbolic space
    Kimura, Makoto
    Maeda, Sadahiro
    Tanabe, Hiromasa
    JOURNAL OF GEOMETRY, 2018, 109 (01)
  • [39] On the volume of a small extrinsic ball in a hypersurface of the hyperbolic space
    Carreras, FJ
    Naveira, AM
    MATHEMATICA SCANDINAVICA, 1998, 83 (02) : 220 - 234
  • [40] On the ricci tensor of a real hypersurface of quaternionic hyperbolic space
    Miguel Ortega
    Juan de Dios Pérez
    manuscripta mathematica, 1997, 93 : 49 - 57