Multi-view longitudinal CNN for multiple sclerosis lesion segmentation

被引:58
|
作者
Birenbaum, Ariel [1 ]
Greenspan, Hayit [2 ]
机构
[1] Tel Aviv Univ, Dept Elect Engn, Tel Aviv, Israel
[2] Tel Aviv Univ, Dept Biomed Engn, Tel Aviv, Israel
关键词
Multiple Sclerosis; Longitudinal; CNN; Segmentation; BRAIN; REGISTRATION; IMAGES; ROBUST;
D O I
10.1016/j.engappai.2017.06.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 50 条
  • [31] Level Set Framework of Multi Labels Fusion for Multiple Sclerosis Lesion Segmentation
    Gong, Zhaoxuan
    Guo, Wei
    Guo, Jia
    Zhu, Zhenyu
    Kim, Yoohwan
    Zhang, Guodong
    ISICDM 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON IMAGE COMPUTING AND DIGITAL MEDICINE, 2018, : 12 - 15
  • [32] Joint Reconstruction of Multi-Contrast MRI for Multiple Sclerosis Lesion Segmentation
    Gomez, Pedro A.
    Sperl, Jonathan I.
    Sprenger, Tim
    Metzler-Baddeley, Claudia
    Jones, Derek K.
    Saemann, Philipp
    Czisch, Michael
    Menzel, Marion I.
    Menze, Bjoern H.
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 155 - 160
  • [33] Multi-branch convolutional neural network for multiple sclerosis lesion segmentation
    Aslani, Shahab
    Dayan, Michael
    Storelli, Loredana
    Filippi, Massimo
    Murino, Vittorio
    Rocca, Maria A.
    Sona, Diego
    NEUROIMAGE, 2019, 196 : 1 - 15
  • [34] Multi-modal segmentation for paramagnetic rim lesion detection in multiple sclerosis
    Wynen, Maxence
    Gordaliza, Pedro M.
    Stolting, Anna
    Maggi, Pietro
    Cuadra, Meritxell Bach
    Macq, Benoit
    IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, MEDICAL IMAGING 2024, 2024, 12931
  • [35] Multi-view pedestrian captioning with an attention topic CNN model
    Liu, Quan
    Chen, Yingying
    Wang, Jinqiao
    Zhang, Sijiong
    COMPUTERS IN INDUSTRY, 2018, 97 : 47 - 53
  • [36] A multi-view CNN encoding for motor imagery EEG signals
    Zhang, Jiayang
    Li, Kang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 85
  • [37] Depth assisted object segmentation in multi-view video
    Cigla, Cevahir
    Alatan, A. Aydin
    2008 3DTV-CONFERENCE: THE TRUE VISION - CAPTURE, TRANSMISSION AND DISPLAY OF 3D VIDEO, 2008, : 165 - 168
  • [38] HIPPOCAMPUS SEGMENTATION THROUGH MULTI-VIEW ENSEMBLE CONVNETS
    Chen, Yani
    Shi, Bibo
    Wang, Zhewei
    Zhang, Pin
    Smith, Charles D.
    Liu, Jundong
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 192 - 196
  • [39] Interactive object segmentation from multi-view images
    Thi Nhat Anh Nguyen
    Cai, Jianfei
    Zheng, Jianmin
    Li, Jianguo
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2013, 24 (04) : 477 - 485
  • [40] Dense Multi-view Homography Estimation and Plane Segmentation
    Bergamasco, Filippo
    Cosmo, Luca
    Schiavinato, Michele
    Albarelli, Andrea
    Torsello, Andrea
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3739 - 3744