Multi-view longitudinal CNN for multiple sclerosis lesion segmentation

被引:58
|
作者
Birenbaum, Ariel [1 ]
Greenspan, Hayit [2 ]
机构
[1] Tel Aviv Univ, Dept Elect Engn, Tel Aviv, Israel
[2] Tel Aviv Univ, Dept Biomed Engn, Tel Aviv, Israel
关键词
Multiple Sclerosis; Longitudinal; CNN; Segmentation; BRAIN; REGISTRATION; IMAGES; ROBUST;
D O I
10.1016/j.engappai.2017.06.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 50 条
  • [1] Longitudinal Multiple Sclerosis Lesion Segmentation Using Multi-view Convolutional Neural Networks
    Birenbaum, Ariel
    Greenspan, Hayit
    DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 : 58 - 67
  • [2] Multi-view representation learning for segmentation of abnormal tissues in medical images applied to multiple sclerosis lesion delineation
    Hassan Khastavaneh
    Hossein Ebrahimpour-Komleh
    SN Applied Sciences, 2019, 1
  • [3] Multi-view representation learning for segmentation of abnormal tissues in medical images applied to multiple sclerosis lesion delineation
    Khastavaneh, Hassan
    Ebrahimpour-Komleh, Hossein
    SN APPLIED SCIENCES, 2019, 1 (09):
  • [4] Investigating efficient CNN architecture for multiple sclerosis lesion segmentation
    Fenneteau, Alexandre
    Bourdon, Pascal
    Helbert, David
    Fernandez-Maloigne, Christine
    Habas, Christophe
    Guillevin, Remy
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (01)
  • [5] Longitudinal multiple sclerosis lesion segmentation: Resource and challenge
    Carass, Aaron
    Roy, Snehashis
    Jog, Amod
    Cuzzocreo, Jennifer L.
    Magrath, Elizabeth
    Gherman, Adrian
    Button, Julia
    Nguyen, James
    Prados, Ferran
    Sudre, Carole H.
    Cardoso, Manuel Jorge
    Cawley, Niamh
    Ciccarelli, Olga
    Wheeler-Kingshott, Claudia A. M.
    Ourselin, Sebastien
    Catanese, Laurence
    Deshpande, Hrishikesh
    Maurel, Pierre
    Commowick, Olivier
    Barillot, Christian
    Tomas-Fernandez, Xavier
    Warfield, Simon K.
    Vaidya, Suthirth
    Chunduru, Abhijith
    Muthuganapathy, Ramanathan
    Krishnamurthi, Ganapathy
    Jesson, Andrew
    Arbel, Tal
    Maier, Oskar
    Handeles, Heinz
    Iheme, Leonardo O.
    Unay, Devrim
    Jain, Saurabh
    Sima, Diana M.
    Smeets, Dirk
    Ghafoorian, Mohsen
    Platel, Bram
    Birenbaum, Ariel
    Greenspan, Hayit
    Bazin, Pierre-Louis
    Calabresi, Peter A.
    Crainiceanu, Ciprian M.
    Ellingsen, Lotta M.
    Reich, Daniel S.
    Prince, Jerry L.
    Pham, Dzung L.
    NEUROIMAGE, 2017, 148 : 77 - 102
  • [6] Retinal multi-lesion segmentation by reinforcing single-lesion guidance with multi-view learning
    Zhang, Liyun
    Fang, Zhiwen
    Li, Ting
    Xiao, Yang
    Zhou, Joey Tianyi
    Yang, Feng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [7] A Multi-view CNN for SAR ATR
    Banas, Katherine M.
    Kreucher, Chris
    2024 IEEE RADAR CONFERENCE, RADARCONF 2024, 2024,
  • [8] Multiple Sclerosis Lesion Segmentation - A Survey of Supervised CNN-Based Methods
    Zhang, Huahong
    Oguz, Ipek
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 11 - 29
  • [9] Automatic segmentation of head and neck primary tumors on MRI using a multi-view CNN
    Jens P.E. Schouten
    Samantha Noteboom
    Roland M. Martens
    Steven W. Mes
    C. René Leemans
    Pim de Graaf
    Martijn D. Steenwijk
    Cancer Imaging, 22
  • [10] Automatic segmentation of head and neck primary tumors on MRI using a multi-view CNN
    Schouten, Jens P. E.
    Noteboom, Samantha
    Martens, Roland M.
    Mes, Steven W.
    Leemans, C. Rene
    de Graaf, Pim
    Steenwijk, Martijn D.
    CANCER IMAGING, 2022, 22 (01)