Metastable phase control of two-dimensional transition metal dichalcogenides on metal substrates

被引:19
|
作者
Ling, Faling [1 ]
Jing, Huirong [1 ]
Chen, Yankun [1 ]
Kang, Wei [1 ]
Zeng, Wen [1 ]
Liu, Xiaoqing [1 ]
Zhang, Yixin [1 ]
Fang, Liang [2 ]
Zhou, Miao [1 ]
机构
[1] Chongqing Univ, Coll Optoelect Engn, Minist Educ, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Coll Phys, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGEN EVOLUTION REACTION; ATOMIC MECHANISM; MOS2; NANOSHEETS; MONOLAYER; STABILIZATION; ENERGETICS; STATE;
D O I
10.1039/c8tc04087g
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phase control of two-dimensional (2D) transition metal dichalcogenides (TMDs) is important from both scientific and engineering aspects. However, up to now it remains a challenge to stabilize the metastable phase of TMDs under ambient conditions. Herein, via systematic first-principles calculations, we demonstrate that by the appropriate choice of metal substrate as a support for the transferred layer, the metastable phase of MoS2 can be effectively stabilized. By screening 15 widely used metal substrates, we found that Mo(001), W(001) and Hf(0001) surfaces not only stabilize the metastable 1T' phase against the common 2H phase, but also prevent the structural transformation of 1T' -> 2H by increasing the transition barrier. Remarkably, we reveal the crucial role of charge transfer from the metal surface to Mo d-orbitals of MoS2 that influences the electron occupation of atomic orbitals associated with crystal splitting, which provides an excellent descriptor to determine the stability of the metastable phase. We also propose a novel field-effect transistor made from a single MoS2 layer with a semiconducting 2H phase region connected to two metallic 1T phase regions in contact with a metal electrode (Mo, W, Hf), which exhibits an ideal Schottky-barrier-free interface. These findings are generally applicable, offering an attractive and practical approach to engineer the phase transition of 2D TMDs and design novel nanodevices with multi-functionalities.
引用
收藏
页码:12245 / 12251
页数:7
相关论文
共 50 条
  • [21] Strong correlations in two-dimensional transition metal dichalcogenides
    Wei Ruan
    Yuanbo Zhang
    ScienceChina(Physics,Mechanics&Astronomy), 2023, (11) : 81 - 95
  • [22] Recent progress in two-dimensional transition metal dichalcogenides
    Li, Peiling
    Cui, Jian
    Zhou, Jiadong
    Wang, Hong
    Liu, Zheng
    Qu, Fanming
    Yang, Changli
    Jing, Xiunian
    Lu, Li
    Liu, Guangtong
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (10): : 882 - 903
  • [23] Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
    Qing Hua Wang
    Kourosh Kalantar-Zadeh
    Andras Kis
    Jonathan N. Coleman
    Michael S. Strano
    Nature Nanotechnology, 2012, 7 : 699 - 712
  • [24] Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides
    Jeong, Hyun
    Oh, Hye Min
    Gokarna, Anisha
    Kim, Hyun
    Yun, Seok Joon
    Han, Gang Hee
    Jeong, Mun Seok
    Lee, Young Hee
    Lerondel, Gilles
    ADVANCED MATERIALS, 2017, 29 (18)
  • [25] Strong correlations in two-dimensional transition metal dichalcogenides
    Ruan, Wei
    Zhang, Yuanbo
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2023, 66 (11)
  • [26] Defect Engineering of Two-Dimensional Transition Metal Dichalcogenides
    Li Jing-Tao
    Ma Yang
    Li Shao-Xian
    He Ye-Ming
    Zhang Yong-Zhe
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2022, 38 (06) : 993 - 1015
  • [27] Thermoelectric properties of two-dimensional transition metal dichalcogenides
    Zhang, Gang
    Zhang, Yong-Wei
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (31) : 7684 - 7698
  • [28] Excitonic Complexes in Two-Dimensional Transition Metal Dichalcogenides
    Xiaotong Chen
    Zhen Lian
    Yuze Meng
    Lei Ma
    Su-Fei Shi
    Nature Communications, 14
  • [29] Photoluminescence manipulation in two-dimensional transition metal dichalcogenides
    Gao, Minglang
    Yu, Lingxiao
    Lv, Qian
    Kang, Feiyu
    Huang, Zheng-Hong
    Lv, Ruitao
    JOURNAL OF MATERIOMICS, 2023, 9 (04) : 768 - 786
  • [30] Functionalization of Two-Dimensional Transition-Metal Dichalcogenides
    Chen, Xin
    McDonald, Aidan R.
    ADVANCED MATERIALS, 2016, 28 (27) : 5738 - 5746