A Continuation Method for Tensor Complementarity Problems

被引:40
|
作者
Han, Lixing [1 ]
机构
[1] Univ Michigan, Dept Math, Flint, MI 48502 USA
关键词
Tensor complementarity problems; Continuation method; Strictly semi-positive tensors; Strong strictly semi-positive tensors; HOMOTOPY METHOD;
D O I
10.1007/s10957-018-1422-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce a Kojima-Megiddo-Mizuno type continuation method for solving tensor complementarity problems. We show that there exists a bounded continuation trajectory when the tensor is strictly semi-positive and any limit point tracing the trajectory gives a solution of the tensor complementarity problem. Moreover, when the tensor is strong strictly semi-positive, tracing the trajectory will converge to the unique solution. Some numerical results are given to illustrate the effectiveness of the method.
引用
收藏
页码:949 / 963
页数:15
相关论文
共 50 条
  • [11] A projected splitting method for vertical tensor complementarity problems
    Ping-Fan Dai
    Shi-Liang Wu
    Optimization Letters, 2024, 18 : 1005 - 1021
  • [12] An Fixed Point Iterative Method for Tensor Complementarity Problems
    Wei, Ping
    Li, Jianhua
    Wang, Xuezhong
    ENGINEERING LETTERS, 2023, 31 (01) : 19 - 19
  • [13] An alternating direction method of multipliers for tensor complementarity problems
    Haoran Zhu
    Liping Zhang
    Computational and Applied Mathematics, 2021, 40
  • [14] A Fixed Point Iterative Method for Tensor Complementarity Problems
    Dai, Ping-Fan
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (03)
  • [15] A Fixed Point Iterative Method for Tensor Complementarity Problems
    Ping-Fan Dai
    Journal of Scientific Computing, 2020, 84
  • [16] A SMOOTHING NEWTON METHOD FOR TENSOR EIGENVALUE COMPLEMENTARITY PROBLEMS
    Hu, Wenyu
    Lu, Laishui
    Yin, Cheng
    Yu, Gaohang
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (02): : 243 - 253
  • [17] A non-interior continuation method for generalized linear complementarity problems
    Ji-Ming Peng
    Zhenghua Lin
    Mathematical Programming, 1999, 86 : 533 - 563
  • [18] A continuation method for linear complementarity problems with P0 matrix
    Li, Meiyan
    Ma, Changfeng
    OPTIMIZATION, 2014, 63 (05) : 757 - 773
  • [19] A non-interior continuation method for generalized linear complementarity problems
    Peng, JM
    Lin, ZH
    MATHEMATICAL PROGRAMMING, 1999, 86 (03) : 533 - 563
  • [20] ON THE PROPERTIES OF TENSOR COMPLEMENTARITY PROBLEMS
    Yu, W.
    Ling, C.
    He, H.
    PACIFIC JOURNAL OF OPTIMIZATION, 2018, 14 (04): : 675 - 691