Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term

被引:36
|
作者
Chen, Hua [3 ]
Liu, Xiaochun [3 ]
Wei, Yawei [1 ,2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
Dirichlet problem; Edge-degenerate elliptic operators; Singular potentials; Edge Sobolev inequality; Edge Hardy inequality;
D O I
10.1016/j.jde.2012.01.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce weighted p-Sobolev spaces on manifolds with edge singularities. We give the proof for the corresponding edge type Sobolev inequality, Poincare inequality and Hardy inequality. As an application of these inequalities, we prove the existence of nontrivial weak solutions for the Dirichlet problem of semilinear elliptic equations with singular potentials on manifolds with edge singularities. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4289 / 4314
页数:26
相关论文
共 50 条
  • [31] Existence and regularity of solutions to semi-linear Dirichlet problem of infinitely degenerate elliptic operators with singular potential term
    Hua Chen
    Peng Luo
    ShuYing Tian
    Science China Mathematics, 2013, 56 : 687 - 706
  • [32] Existence and regularity of solutions to semi-linear Dirichlet problem of infinitely degenerate elliptic operators with singular potential term
    Chen Hua
    Luo Peng
    Tian ShuYing
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (04) : 687 - 706
  • [33] THE DIRICHLET PROBLEM FOR SECOND ORDER SEMILINEAR ELLIPTIC AND PARABOLIC EQUATIONS
    Tersenov, Alkis
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2009, 1 (03): : 393 - 411
  • [34] The Dirichlet problem for singular elliptic equations with general nonlinearities
    Virginia De Cicco
    Daniela Giachetti
    Francescantonio Oliva
    Francesco Petitta
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [35] The Dirichlet problem for singular elliptic equations with general nonlinearities
    De Cicco, Virginia
    Giachetti, Daniela
    Oliva, Francescantonio
    Petitta, Francesco
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
  • [36] On a semilinear degenerate elliptic boundary value problem for pseudodifferential equations
    Egorov, Yu. V.
    Nguyen Minh Chuong
    Dang Anh Tuan
    DOKLADY MATHEMATICS, 2009, 80 (01) : 456 - 459
  • [37] ON BOUNDARY VALUE PROBLEM FOR SEMILINEAR DEGENERATE ELLIPTIC DIFFERENTIAL EQUATIONS
    Luyen, D. T.
    Tri, N. M.
    5TH INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM5), 2012, 1450 : 13 - 17
  • [38] On a semilinear degenerate elliptic boundary value problem for pseudodifferential equations
    Yu. V. Egorov
    Nguyen Minh Chuong
    Dang Anh Tuan
    Doklady Mathematics, 2009, 80 : 456 - 459
  • [39] CARLESON MEASURE ESTIMATES AND THE DIRICHLET PROBLEM FOR DEGENERATE ELLIPTIC EQUATIONS
    Hofmann, Steve
    Le, Phi
    Morris, Andrew J.
    ANALYSIS & PDE, 2019, 12 (08): : 2095 - 2146
  • [40] Dirichlet problem for noncoercive nonlinear elliptic equations with singular drift term in unbounded domains
    Di Gironimo, Patrizia
    Monsurro, Sara
    Zecca, Gabriella
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29