Multi-objective Pruning for CNNs Using Genetic Algorithm

被引:25
|
作者
Yang, Chuanguang [1 ,2 ]
An, Zhulin [1 ]
Li, Chao [1 ]
Diao, Boyu [1 ]
Xu, Yongjun [1 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Genetic algorithm; Convolutional neural networks; Multi-objective pruning;
D O I
10.1007/978-3-030-30484-3_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose a heuristic genetic algorithm (GA) for pruning convolutional neural networks (CNNs) according to the multi-objective trade-off among error, computation and sparsity. In our experiments, we apply our approach to prune pre-trained LeNet across the MNIST dataset, which reduces 95.42% parameter size and achieves 16 times speedups of convolutional layer computation with tiny accuracy loss by laying emphasis on sparsity and computation, respectively. Our empirical study suggests that GA is an alternative pruning approach for obtaining a competitive compression performance. Additionally, compared with state-of-the-art approaches, GA can automatically pruning CNNs based on the multi-objective importance by a pre-defined fitness function.
引用
收藏
页码:299 / 305
页数:7
相关论文
共 50 条
  • [21] Feature selection using multi-objective CHC genetic algorithm
    Rathee, Seema
    Ratnoo, Saroj
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 1656 - 1664
  • [22] Mobile Compatibility Testing Using Multi-objective Genetic Algorithm
    Cheng, Jing
    Zhu, Yian
    Zhang, Tao
    Zhu, Chuanxi
    Zhou, Wenqiang
    9TH IEEE INTERNATIONAL SYMPOSIUM ON SERVICE-ORIENTED SYSTEM ENGINEERING (SOSE 2015), 2015, : 302 - 307
  • [23] Software Reliability Prediction Using Multi-Objective Genetic Algorithm
    Aljahdali, Sultan H.
    El-Telbany, Mohammed E.
    2009 IEEE/ACS INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, VOLS 1 AND 2, 2009, : 293 - +
  • [24] Multi-objective optimization of rotary regenerator using genetic algorithm
    Sanaye, Sepehr
    Hajabdollahi, Hassan
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2009, 48 (10) : 1967 - 1977
  • [25] Optimization of fishing vessels using a Multi-Objective Genetic Algorithm
    Gammon, Mark A.
    OCEAN ENGINEERING, 2011, 38 (10) : 1054 - 1064
  • [26] Multi-Objective Design Optimization of Multicopter using Genetic Algorithm
    Ayaz, Ahsan
    Rasheed, Ashhad
    PROCEEDINGS OF 2021 INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGIES (IBCAST), 2021, : 177 - 182
  • [27] Construction of Lyapunov Functions using Multi-Objective Genetic Algorithm
    Sabouri, Mohammad
    Setoodeh, Peyman
    Asemani, Mohammad Hassan
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 818 - 822
  • [28] Approximation of digital curves using a multi-objective genetic algorithm
    Locteau, Herve
    Raveaux, Romain
    Adam, Sebastien
    Lecourtier, Yves
    Heroux, Pierre
    Trupin, Eric
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 716 - +
  • [29] Optimisation of cutting parameters using a multi-objective genetic algorithm
    Solimanpur, M.
    Ranjdoostfard, F.
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2009, 47 (21) : 6019 - 6036
  • [30] Multi-objective optimisation of multipass turning by using a genetic algorithm
    Quiza Sardinas, Ramon
    Albelo Mengana, Jorge E.
    Davim, J. Paulo
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2009, 35 (1-2): : 134 - 144