Reliability of Supervised Machine Learning Using Synthetic Data in Health Care: Model to Preserve Privacy for Data Sharing

被引:88
|
作者
Rankin, Debbie [1 ]
Black, Michaela [1 ]
Bond, Raymond [2 ]
Wallace, Jonathan [2 ]
Mulvenna, Maurice [2 ]
Epelde, Gorka [3 ,4 ]
机构
[1] Ulster Univ, Sch Comp Engn & Intelligent Syst, Derry Londonderry, North Ireland
[2] Ulster Univ, Sch Comp, Jordanstown, North Ireland
[3] Donostia San Sebastian, Vicomtech Fdn, Donostia San Sebastian, Spain
[4] Biodonostia Hlth Res Inst, eHlth Grp, Donostia San Sebastian, Spain
基金
欧盟地平线“2020”;
关键词
synthetic data; supervised machine learning; data utility; health care; decision support; statistical disclosure control; privacy; open data; stochastic gradient descent; decision tree; k-nearest neighbors; random forest; support vector machine; MICRODATA; RISK;
D O I
10.2196/18910
中图分类号
R-058 [];
学科分类号
摘要
Background: The exploitation of synthetic data in health care is at an early stage. Synthetic data could unlock the potential within health care datasets that are too sensitive for release. Several synthetic data generators have been developed to date; however, studies evaluating their efficacy and generalizability are scarce. Objective: This work sets out to understand the difference in performance of supervised machine learning models trained on synthetic data compared with those trained on real data. Methods: A total of 19 open health datasets were selected for experimental work. Synthetic data were generated using three synthetic data generators that apply classification and regression trees, parametric, and Bayesian network approaches. Real and synthetic data were used (separately) to train five supervised machine learning models: stochastic gradient descent, decision tree, k-nearest neighbors, random forest, and support vector machine. Models were tested only on real data to determine whether a model developed by training on synthetic data can used to accurately classify new, real examples. The impact of statistical disclosure control on model performance was also assessed. Results: A total of 92% of models trained on synthetic data have lower accuracy than those trained on real data. Tree-based models trained on synthetic data have deviations in accuracy from models trained on real data of 0.177 (18%) to 0.193 (19%), while other models have lower deviations of 0.058 (6%) to 0.072 (7%). The winning classifier when trained and tested on real data versus models trained on synthetic data and tested on real data is the same in 26% (5/19) of cases for classification and regression tree and parametric synthetic data and in 21% (4/19) of cases for Bayesian network-generated synthetic data. Tree-based models perform best with real data and are the winning classifier in 95% (18/19) of cases. This is not the case for models trained on synthetic data. When tree-based models are not considered, the winning classifier for real and synthetic data is matched in 74% (14/19), 53% (10/19), and 68% (13/19) of cases for classification and regression tree, parametric, and Bayesian network synthetic data, respectively. Statistical disclosure control methods did not have a notable impact on data utility. Conclusions: The results of this study are promising with small decreases in accuracy observed in models trained with synthetic data compared with models trained with real data, where both are tested on real data. Such deviations are expected and manageable. Tree-based classifiers have some sensitivity to synthetic data, and the underlying cause requires further investigation. This study highlights the potential of synthetic data and the need for further evaluation of their robustness. Synthetic data must ensure individual privacy and data utility are preserved in order to instill confidence in health care departments when using such data to inform policy decision-making.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Sharpening the BLADE: Missing Data Imputation Using Supervised Machine Learning
    Suresh, Marcus
    Taib, Ronnie
    Zhao, Yanchang
    Jin, Warren
    AI 2019: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, 11919 : 215 - 227
  • [42] Target detection using supervised machine learning algorithms for GPR data
    N. Smitha
    Vipula Singh
    Sensing and Imaging, 2020, 21
  • [43] Automatic emotion recognition in healthcare data using supervised machine learning
    Azam N.
    Ahmad T.
    Haq N.U.
    PeerJ Computer Science, 2021, 7
  • [44] Sharing health-related data: a privacy test?
    Dyke, Stephanie O. M.
    Dove, Edward S.
    Knoppers, Bartha M.
    NPJ GENOMIC MEDICINE, 2016, 1
  • [45] Sharing health-related data: a privacy test?
    Stephanie OM Dyke
    Edward S Dove
    Bartha M Knoppers
    npj Genomic Medicine, 1
  • [46] Privacy-preserving heterogeneous health data sharing
    Mohammed, Noman
    Jiang, Xiaoqian
    Chen, Rui
    Fung, Benjamin C. M.
    Ohno-Machado, Lucila
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (03) : 462 - 469
  • [48] Privacy-Aware Data Forensics of VRUs Using Machine Learning and Big Data Analytics
    Babar M.
    Tariq M.U.
    Almasoud A.S.
    Alshehri M.D.
    Babar, Muhammad (muhammad.babar@aiou.edu.pk), 1600, Hindawi Limited (2021):
  • [49] A User-Centered Medical Data Sharing Scheme for Privacy-Preserving Machine Learning
    Wang, Lianhai
    Meng, Lingyun
    Liu, Fengkai
    Shao, Wei
    Fu, Kunlun
    Xu, Shujiang
    Zhang, Shuhui
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [50] Policymaking to preserve privacy in disclosure of public health data: a suggested framework
    Mizani, Mehrdad A.
    Baykal, Nazife
    JOURNAL OF MEDICAL ETHICS, 2015, 41 (03) : 263 - 267