Effect of Ag nanoparticle size on triboelectric nanogenerator for mechanical energy harvesting

被引:6
|
作者
Zhang, Ping [1 ]
Li, Peng-Fei [1 ]
Zhang, Hong-Hao [1 ]
Deng, Lu [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin, Peoples R China
关键词
triboelectric nanogenerators; Ag nanoparticles; particle size; dielectric constant; SENSOR; IMPACTS; FILM;
D O I
10.1088/1361-6528/ac8aa2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Triboelectric nanogenerators (TENG) are generally utilized on the grounds that they can catch low-recurrence mechanical energy from various types of movement and convert it into electricity. It has been proved that the adulteration of conductive particles in the triboelectric layer can improve its output performance, but metal nanomaterials have different properties at different scales. In this paper, the triboelectric layer of TENG is a composite film made of silver nanoparticles (AgNPs) with different particle sizes (20 nm, 50 nm, 200 nm and 500 nm) that were dispersed and mixed with two-component liquid silica gel step by step. The open circuit voltage (Voc) and short circuit current (Isc) of the 20 nm component of the AgNPs-dispersed/two-component liquid silica gel TENG(At-TENG) are 102.8 V and 4.42 mu A, which are higher than the result execution of the other components. Smaller size nanoparticles have more number of nanoparticles when the mass fraction is the same. AgNPs form micro-capacitance structures in the insulating polymer layer and enhance the dielectric properties of the composite films through an interfacial polarization mechanism. At-TENG can light up 53 commercial LEDs and power calculators or wristband electronic watches, proving its utility as a self-powered power source. An extensive experiment proves the advantage of small size using comparison and theoretical analysis and provides suggestions for the selection of TENG dopants.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Skin-integrated, stretchable triboelectric nanogenerator for energy harvesting and mechanical sensing
    Zhao, Ling
    Lin, Zihong
    Lai, King Wai Chiu
    MATERIALS TODAY ELECTRONICS, 2022, 2
  • [22] A triboelectric nanogenerator design for harvesting environmental mechanical energy from water mist
    Chen, Yun
    Kuang, Yicheng
    Shi, Dachuang
    Hou, Maoxiang
    Chen, Xin
    Jiang, Lelun
    Gao, Jian
    Zhang, Lanyu
    He, Yunbo
    Wong, Ching-Ping
    NANO ENERGY, 2020, 73
  • [23] Mechanical Regulation Triboelectric Nanogenerator with Controllable Output Performance for Random Energy Harvesting
    Yin Mengfei
    Lu Xiaohui
    Qiao Guangda
    Xu Yuhong
    Wang Yuqi
    Cheng Tinghai
    Wang Zhong Lin
    ADVANCED ENERGY MATERIALS, 2020, 10 (22)
  • [24] Gas-driven triboelectric nanogenerator for mechanical energy harvesting and displacement monitoring
    Li, Changzheng
    Guo, Hengyi
    Liao, Jiaqiang
    Wang, Yaofeng
    Qin, Yaoyu
    Tian, Zhi Qun
    NANO ENERGY, 2024, 126
  • [25] Automatically switchable mechanical frequency regulator for continuous mechanical energy harvesting via a triboelectric nanogenerator
    Khanh Duy Pham
    Bhatia, Divij
    Nghia Dinh Huynh
    Kim, Hakjeong
    Baik, Jeong Min
    Lin, Zong-Hong
    Choi, Dukhyun
    NANO ENERGY, 2021, 89
  • [26] Design of DC-Triboelectric Nanogenerator for Energy Harvesting
    Abdelrahim, Mohamed Omer Mahgoub
    Lee, Lini
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2022, 13 (06) : 1308 - 1316
  • [27] Emerging direct current triboelectric nanogenerator for high-entropy mechanical energy harvesting
    Chen, Jie
    Guo, Ruilong
    Guo, Hengyu
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (05) : 1297 - 1316
  • [28] A Triboelectric Nanogenerator for Energy Harvesting from Transformers' Vibrations
    Simoes, Agnes Nascimento
    Carvalho, Danilo Jose
    Morita, Eugenio de Souza
    Moretti, Haroldo Luiz
    Vendrameto, Helen Velozo
    Fu, Li
    Torres, Floriano
    de Souza, Andre Nunes
    Bizzo, Waldir Antonio
    Mazon, Talita
    MACHINES, 2022, 10 (03)
  • [29] Triboelectric nanogenerator with a seesaw structure for harvesting ocean energy
    Cheng, Jiahui
    Zhang, Xiaolong
    Jia, Tingwei
    Wu, Qian
    Dong, Yang
    Wang, Daoai
    NANO ENERGY, 2022, 102
  • [30] Multi-Mode Triboelectric Nanogenerator for Football Impact Monitoring and Mechanical Energy Harvesting
    Chen, Xi
    Yu, Xiaolong
    CHEMISTRYOPEN, 2025,