Short-term electric vehicles charging load forecasting based on deep learning in low-quality data environments

被引:30
|
作者
Shen, Xiaodong [1 ]
Zhao, Houxiang [1 ]
Xiang, Yue [1 ]
Lan, Peng [1 ]
Liu, Junyong [1 ]
机构
[1] Sichuan Univ, Coll Elect Engn, Chengdu 610065, Peoples R China
关键词
EV short-term load forecasting; Data imputation; Data augmentation; Generative adversarial networks; Gated recurrent unit neural network; Long short-term memory neural network; TEMPORAL MODEL;
D O I
10.1016/j.epsr.2022.108247
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The accurate prediction of electric vehicles (EVs) load is the research basis for evaluating the impact of EVs on the power grid and optimizing the operation of the power grid. However, because the accumulated data of the newly operated EV charging stations are scarce, it is very challenging to use scarce data to obtain accurate prediction results. On the one hand, the missing values and outliers in the scarce dataset have a greater impact on the prediction results. On the other hand, a model with high accuracy cannot be trained using scarce datasets. To obtain accurate EV prediction results based on scarce datasets, a data generation method based on a generative adversarial network (GAN) is proposed. The proposed model is used to alleviate the influence of low-quality EVs load datasets on the prediction results. In addition, the performance of the prediction model is critical for improving the accuracy. In this study, a new gating mechanism called the Mogrifier is adopted in the long short-term memory (LSTM) network to improve its performance. Finally, the effectiveness of the proposed method is verified by experiments.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] An ensemble deep learning model for short-term load forecasting based on ARIMA and LSTM
    Tang, Lingling
    Yi, Yulin
    Peng, Yuexing
    2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2019,
  • [42] Short-Term Load Forecasting Based on Deep Learning Bidirectional LSTM Neural Network
    Cai, Changchun
    Tao, Yuan
    Zhu, Tianqi
    Deng, Zhixiang
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [43] Deep learning based short-term load forecasting incorporating calendar and weather information
    Jiang, Weiwei
    INTERNET TECHNOLOGY LETTERS, 2022, 5 (04)
  • [44] Deep Learning-Based Short-Term Load Forecasting for Transformers in Distribution Grid
    Wang, Renshu
    Zhao, Jing
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 1 - 10
  • [45] Short-term Load Forecasting Model of GRU Network Based on Deep Learning Framework
    Gao Xiuyun
    Wang Ying
    Gao Yang
    Sun Chengzhi
    Xiang Wen
    Yue Yimiao
    2018 2ND IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2018,
  • [46] Ultra-Short-Term Load Forecasting of Electric Vehicle Charging Stations Based on Ensemble Learning
    Li H.
    Zhu J.
    Fu X.
    Fang C.
    Liang D.
    Zhou Y.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2022, 56 (08): : 1004 - 1013
  • [47] Short-Term Forecasting of Electric Vehicle Load Using Time Series, Machine Learning, and Deep Learning Techniques
    Vishnu, Gayathry
    Kaliyaperumal, Deepa
    Pati, Peeta Basa
    Karthick, Alagar
    Subbanna, Nagesh
    Ghosh, Aritra
    WORLD ELECTRIC VEHICLE JOURNAL, 2023, 14 (09):
  • [48] Short Term Electric Load Forecasting Based on Data Transformation and Statistical Machine Learning
    Andriopoulos, Nikos
    Magklaras, Aristeidis
    Birbas, Alexios
    Papalexopoulos, Alex
    Valouxis, Christos
    Daskalaki, Sophia
    Birbas, Michael
    Housos, Efthymios
    Papaioannou, George P.
    APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 22
  • [49] Short-term Load Forecasting on Smart Meter via Deep Learning
    Khatri, Ishan
    Dong, Xishuang
    Attia, John
    Qian, Lijun
    2019 51ST NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2019,
  • [50] Review of Deep Learning Application for Short-Term Household Load Forecasting
    Apolo Penaloza, Ana Karen
    Balbinot, Alexandre
    Leborgne, Roberto Chouhy
    2020 IEEE PES TRANSMISSION & DISTRIBUTION CONFERENCE AND EXHIBITION - LATIN AMERICA (T&D LA), 2020,