Automatic Determination of Vertical Cup-to-Disc Ratio in Retinal Fundus Images for Glaucoma Screening

被引:24
|
作者
Guo, Jiapan [1 ]
Azzopardi, George [1 ]
Shi, Chenyu [1 ]
Jansonius, Nomdo M. [2 ]
Petkov, Nicolai [1 ]
机构
[1] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intelli, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Univ Med Ctr Groningen, Dept Ophthalmol, NL-9713 GW Groningen, Netherlands
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Glaucoma; retinal fundus images; vertical cup-to-disk ratio; trainable COSFIRE filters; GMLVQ; OPTIC-NERVE HEAD; TRAINABLE COSFIRE FILTERS; VESSEL DELINEATION; BLOOD-VESSELS; SEGMENTATION; LOCALIZATION; PREVALENCE; CLASSIFICATION; IDENTIFICATION; RECOGNITION;
D O I
10.1109/ACCESS.2018.2890544
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Glaucoma is a chronic progressive optic neuropathy that causes visual impairment or blindness if left untreated. It is crucial to diagnose it at an early stage in order to enable treatment. Fundus photography is a viable option for population-based screening. A fundus photograph enables the observation of the excavation of the optic disk-the hallmark of glaucoma. The excavation is quantified as a vertical cup-to-disk ratio (VCDR). The manual assessment of retinal fundus images is, however, time-consuming and costly. Thus, an automated system is necessary to assist human observers. We propose a computer-aided diagnosis system, which consists of the localization of the optic disk, the determination of the height of the optic disk and the cup, and the computation of the VCDR. We evaluated the performance of our approach on eight publicly available datasets, which have, in total, 1712 retinal fundus images. We compared the obtained VCDR values with those provided by an experienced ophthalmologist and achieved a weighted VCDR mean difference of 0.11. The system provides a reliable estimation of the height of the optic disk and the cup in terms of the relative height error (RHE = 0.08 and 0.09, respectively). The Bland-Altman analysis showed that the system achieves a good agreement with the manual annotations, especially for large VCDRs which indicate pathology.
引用
收藏
页码:8527 / 8541
页数:15
相关论文
共 50 条
  • [21] Automatic Tool for Optic Disc and Cup Detection on Retinal Fundus Images
    Angel Fernandez-Granero, Miguel
    Sarmiento Vega, Auxiliadora
    Isabel Garcia, Anabel
    Sanchez-Morillo, Daniel
    Jimenez, Soledad
    Alemany, Pedro
    Fondon, Irene
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT I, 2017, 10305 : 246 - 256
  • [22] THE CUP-TO-DISC RATIO AND CENTRAL RETINAL VEIN OCCLUSION
    STRAHLMAN, ER
    QUINLAN, PM
    ENGER, C
    ELMAN, MJ
    ARCHIVES OF OPHTHALMOLOGY, 1989, 107 (04) : 524 - 525
  • [23] Automated glaucoma detection using retinal layers segmentation and optic cup-to-disc ratio in optical coherence tomography images
    Ramzan, Aneeqa
    Akram, Muhammad Usman
    Shaukat, Arslan
    Khawaja, Sajid Gul
    Yasin, Ubaid Ullah
    Butt, Wasi Haider
    IET IMAGE PROCESSING, 2019, 13 (03) : 409 - 420
  • [24] Assessment of the Cup-to-Disc ratio method for Glaucoma detection.
    Joshua, Afolabi O.
    Mabuza-Hocquet, Gugulethu
    Nelwamondo, Fulufhelo, V
    2020 INTERNATIONAL SAUPEC/ROBMECH/PRASA CONFERENCE, 2020, : 405 - 409
  • [25] ARGALI- an Automatic cup-to-disc Ratio measurement system for Glaucoma detection and AnaLysIs framework
    Liu, J.
    Wong, D. W. K.
    Lim, J. H.
    Li, H.
    Tan, N. M.
    Wong, T. Y.
    MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260
  • [26] ACHIKO-I Retinal Fundus Image Database and its Evaluation on Cup-to-Disc Ratio Measurement
    Yin, Fengshou
    Liu, Jiang
    Wong, Damon Wing Kee
    Tan, Ngan Meng
    Lee, Beng Hai
    Cheng, Jun
    Htoo, Min Thet
    Zhang, Zhuo
    Xu, Yanwu
    Gao, Xinting
    PROCEEDINGS OF THE 2013 IEEE 8TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2013, : 224 - 227
  • [27] Determination of cup and disc ratio of optical nerve head for diagnosis of glaucoma on stereo retinal fundus image pairs
    Muramatsu, Chisako
    Nakagawa, Toshiaki
    Sawada, Akira
    Hatanaka, Yuji
    Hara, Takeshi
    Yamamoto, Tetsuya
    Fujita, Hiroshi
    MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260
  • [28] Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-Supervised Learning
    Zhao, Rongchang
    Chen, Xuanlin
    Liu, Xiyao
    Chen, Zailiang
    Guo, Fan
    Li, Shuo
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (04) : 1104 - 1113
  • [29] Generalizability of Deep Neural Networks for Vertical Cup-to-Disc Ratio Estimation in Ultra-Widefield and Smartphone-Based Fundus Images
    Yap, Boon Peng
    Kelvin, Li Zhenghao
    Toh, En Qi
    Low, Kok Yao
    Rani, Sumaya Khan
    Goh, Eunice Jin Hui
    Hui, Vivien Yip Cherng
    Ng, Beng Koon
    Lim, Tock Han
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2024, 13 (04):
  • [30] Highly Accurate and Precise Automated Cup-to-Disc Ratio Quanti fi cation for Glaucoma Screening
    Chaurasia, Abadh K.
    Greatbatch, Connor J.
    Han, Xikun
    Gharahkhani, Puya
    Mackey, David A.
    MacGregor, Stuart
    Craig, Jamie E.
    Hewitt, Alex W.
    OPHTHALMOLOGY SCIENCE, 2024, 4 (05):