ON WEIGHTED COMPLEX RANDERS METRICS

被引:1
|
作者
Wong, Pit-Mann [1 ]
Zhong, Chunping [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce the weighted complex Randers metric F = h + Sigma(m)(i=1)vertical bar B-i vertical bar(1/i) on a complex manifold M, here h is a Hermitian metric on M and B-i, i = 1 , ... ,m are holomorphic symmetric forms of weights i on M, respectively. These metrics are special case of jet metric studied in Chandler Wong [6]. Our main theorem is that the holomorphic sectional curvature hbsc(F) of F is always less or equal to hbsc(h). Using this result we obtain a rigidity result, that is, a compact complex manifold M of complex dimension n with a weighted complex Randers metric F of positive constant holomorphic sectional curvature is isomorphic to P-n.
引用
收藏
页码:589 / 612
页数:24
相关论文
共 50 条
  • [21] On the Flag Curvature of Invariant Randers Metrics
    Hamid Reza Salimi Moghaddam
    Mathematical Physics, Analysis and Geometry, 2008, 11 : 1 - 9
  • [22] Randers metrics on CP2
    Vasile Sorin Sabău
    Periodica Mathematica Hungarica, 2004, 48 (1-2) : 25 - 31
  • [23] On the flag curvature of invariant randers metrics
    Moghaddam, Hamid Reza Salimi
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2008, 11 (01) : 1 - 9
  • [24] RANDERS METRICS OF SECTIONAL FLAG CURVATURE
    Chen, Bin
    Zhao, Lili
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (01): : 55 - 67
  • [25] Some results on strong Randers metrics
    Xiaohuan Mo
    Hongmei Zhu
    Periodica Mathematica Hungarica, 2015, 71 : 24 - 34
  • [26] Some results on strong Randers metrics
    Mo, Xiaohuan
    Zhu, Hongmei
    PERIODICA MATHEMATICA HUNGARICA, 2015, 71 (01) : 24 - 34
  • [27] On a Complex Randers Space
    Sweta Kumari
    P. N. Pandey
    National Academy Science Letters, 2019, 42 : 123 - 130
  • [28] On a Complex Randers Space
    Kumari, Sweta
    Pandey, P. N.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2019, 42 (02): : 123 - 130
  • [29] Invariant randers metrics on homogeneous riemannian manifolds
    Deng, SQ
    Hou, ZX
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (15): : 4353 - 4360
  • [30] Some remarks on Einstein-Randers metrics
    Tang, Xiaoyun
    Yu, Changtao
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 58 : 83 - 102