ON WEIGHTED COMPLEX RANDERS METRICS

被引:1
|
作者
Wong, Pit-Mann [1 ]
Zhong, Chunping [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce the weighted complex Randers metric F = h + Sigma(m)(i=1)vertical bar B-i vertical bar(1/i) on a complex manifold M, here h is a Hermitian metric on M and B-i, i = 1 , ... ,m are holomorphic symmetric forms of weights i on M, respectively. These metrics are special case of jet metric studied in Chandler Wong [6]. Our main theorem is that the holomorphic sectional curvature hbsc(F) of F is always less or equal to hbsc(h). Using this result we obtain a rigidity result, that is, a compact complex manifold M of complex dimension n with a weighted complex Randers metric F of positive constant holomorphic sectional curvature is isomorphic to P-n.
引用
收藏
页码:589 / 612
页数:24
相关论文
共 50 条
  • [1] ON COMPLEX RANDERS METRICS
    Chen, Bin
    Shen, Yibing
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (08) : 971 - 986
  • [2] On Homogeneous Randers Metrics
    Sadighi, Akbar
    Toomanian, Megerdich
    Najafi, Behzad
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2021, 14 (01): : 217 - 225
  • [3] On the projective Randers metrics
    Rafie-Rad, Mehdi
    Rezaei, Bahman
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (5-6) : 281 - 283
  • [4] On weakly stretch Randers metrics
    Chen, Guangzu
    Liu, Lihong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [5] ON WEAKLY STRETCH RANDERS METRICS
    Tayebi, Akbar
    Ghasemi, Asma
    Sabzevari, Mehdi
    MATEMATICKI VESNIK, 2021, 73 (03): : 174 - 182
  • [6] On dually flat Randers metrics
    Yu, Changtao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 146 - 155
  • [7] On generalized Einstein Randers metrics
    Tayebi, Akbar
    Nankali, Ali
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (10)
  • [8] On Ricci tensors of Randers metrics
    Tayebi, A.
    Peyghan, E.
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (11) : 1665 - 1670
  • [9] Cohomogeneity One Randers Metrics
    Li, Jifu
    Hu, Zhiguang
    Deng, Shaoqiang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (03): : 575 - 584
  • [10] On projectively related randers metrics
    Shen, Yibing
    Yu, Yaoyong
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (05) : 503 - 520