Design and optimization of a polarized positron source for future linear collider using Geant4

被引:0
|
作者
Riemann, Sabine [1 ]
Schaelicke, Andreas [1 ]
Ushakov, Andriy [1 ]
机构
[1] DESY, D-15738 Zeuthen, Germany
关键词
D O I
10.1088/1742-6596/295/1/012154
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A polarized positron source is one of the key ingredients of a future linear collider. The source performance is decisive in order to reach the goals of the physics programme. But it is a challenge to develop a high-intensity polarized positron source, which meets the machine requirements. Simulation programs which can calculate expected yield, polarization are indispensable tools in these R&D projects. Based on the Geant4 framework a new tool, PPS-Sim (Polarized Positron Source Simulation), has been developed for design and optimization of a polarized positron source. This program is able to simulate common positron production mechanisms. It describes both the production of polarized positrons, and the spin transport in electromagnetic components in a single framework.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Compressive effect of the magnetic field on the positron range in commonly used positron emitters simulated using Geant4
    Chong Li
    Xingzhong Cao
    Fuyan Liu
    Haohui Tang
    Zhiming Zhang
    Baoyi Wang
    Long Wei
    The European Physical Journal Plus, 132
  • [32] GEANT4 for breast dosimetry: parameters optimization study
    Fedon, C.
    Longo, F.
    Mettivier, G.
    Longo, R.
    PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (16): : N311 - N323
  • [33] Optimization of BaF2 positron-lifetime spectrometer geometry based on the Geant4 simulations
    Dubov, L. Yu.
    Grafutin, V. I.
    Funtikov, Yu. V.
    Shtotsky, Yu. V.
    Elnikova, L. V.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2014, 334 : 81 - 87
  • [34] GEANT4 SIMULATIONS OF A BEAM SHAPING ASSEMBLY DESIGN AND OPTIMIZATION FOR THERMAL/EPITHERMAL NEUTRONS
    Avagyan, R.
    Avetisyan, R.
    Ivanyan, V.
    Kerobyan, I.
    ACTA PHYSICA POLONICA B, 2017, 48 (10): : 1693 - 1699
  • [35] Simulation of positron backscattering on Al, Cu, Ag and Au targets using GEANT4 code
    Lai, Xin
    Jiang, Xiaopan
    Cao, Xingzhong
    Zhang, Xi
    Zhang, Zhiming
    Cao, Xuexiang
    Xiang, Gang
    Wang, Baoyi
    Wei, Long
    SURFACE AND INTERFACE ANALYSIS, 2017, 49 (05) : 457 - 463
  • [36] Optimization of a Novel Cerenkov Detector for Radiotherapy Applications Using GEANT4 and FLUKA
    Lo Meo, S.
    Rovelli, T.
    Fiorino, C.
    Cattaneo, G. M.
    Calandrino, R.
    Boschi, F.
    Sbarbati, A.
    Campanella, F.
    Mattozzi, M.
    Panebianco, A. S.
    Spinelli, A. E.
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 2636 - 2639
  • [37] Design and optimization of an energy degrader with a multi-wedge scheme based on Geant4
    Liang, Zhikai
    Liu, Kaifeng
    Qin, Bin
    Chen, Wei
    Liu, Xu
    Li, Dong
    Xiong, Yongqian
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 890 : 112 - 118
  • [38] Nuclear criticality calculations using GEANT4
    Seghour, A.
    ANNALS OF NUCLEAR ENERGY, 2021, 164
  • [39] Proton Source Modeling for Geant4 Monte Carlo Simulations
    Barnes, S.
    McAuley, G.
    Wroe, A.
    Slater, J.
    MEDICAL PHYSICS, 2012, 39 (06) : 3756 - 3757
  • [40] GEANT4 parameter tuning using Professor
    Elvira, V
    Fields, L.
    Genser, K. L.
    Hatcher, R.
    Ivanchenko, V
    Kelsey, M.
    Koi, T.
    Perdue, G. N.
    Ribon, A.
    Uzhinsky, V
    Wright, D. H.
    Yarba, J.
    Jun, S. Y.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (02):