Regret lower bound and optimal algorithm for high-dimensional contextual linear bandit

被引:2
|
作者
Li, Ke [1 ]
Yang, Yun [1 ]
Narisetty, Naveen N. [1 ]
机构
[1] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2021年 / 15卷 / 02期
关键词
Contextual linear bandit; high-dimension; minimax regret; sparsity; upper confidence bound; VARIABLE SELECTION;
D O I
10.1214/21-EJS1909
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the multi-armed bandit problem with high-dimensional features. First, we prove a minimax lower bound, O((log d)(alpha+1/2) T (1-alpha/2) + logT), for the cumulative regret, in terms of horizon T, dimension d and a margin parameter alpha is an element of [0, 1], which controls the separation between the optimal and the sub-optimal arms. This new lower bound unifies existing regret bound results that have different dependencies on T due to the use of different values of margin parameter a explicitly implied by their assumptions. Second, we propose a simple and computationally efficient algorithm inspired by the general Upper Confidence Bound (UCB) strategy that achieves a regret upper bound matching the lower bound. The proposed algorithm uses a properly centered l(1)-ball as the confidence set in contrast to the commonly used ellipsoid confidence set. In addition, the algorithm does not require any forced sampling step and is thereby adaptive to the practically unknown margin parameter. Simulations and a real data analysis are conducted to compare the proposed method with existing ones in the literature.
引用
收藏
页码:5652 / 5695
页数:44
相关论文
共 50 条
  • [21] Application of the ADMM Algorithm for a High-Dimensional Partially Linear Model
    Feng, Aifen
    Chang, Xiaogai
    Shang, Youlin
    Fan, Jingya
    MATHEMATICS, 2022, 10 (24)
  • [22] An algorithm for total variation regularization in high-dimensional linear problems
    Defrise, Michel
    Vanhove, Christian
    Liu, Xuan
    INVERSE PROBLEMS, 2011, 27 (06)
  • [23] Lower bound of local quantum uncertainty for high-dimensional bipartite quantum systems
    Wang, ShuHao
    Li, Hui
    Lu, Xian
    Chen, Bin
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (09)
  • [24] Lower bound of local quantum uncertainty for high-dimensional bipartite quantum systems
    ShuHao Wang
    Hui Li
    Xian Lu
    Bin Chen
    Science China Physics, Mechanics & Astronomy, 2019, 62
  • [25] Lower bound of local quantum uncertainty for high-dimensional bipartite quantum systems
    ShuHao Wang
    Hui Li
    Xian Lu
    Bin Chen
    Science China(Physics,Mechanics & Astronomy), 2019, (09) : 38 - 44
  • [26] New Lower Bound on Ball Packing Density in High-Dimensional Hyperbolic Spaces
    Fernandez, Irene Gil
    Kim, Jaehoon
    Liu, Hong
    Pikhurko, Oleg
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (02)
  • [27] Learning Optimal Antenna Tilt Control Policies: A Contextual Linear Bandit Approach
    Vannella, Filippo
    Proutiere, Alexandre
    Jedra, Yassir
    Jeong, Jaeseong
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2022), 2022, : 740 - 749
  • [28] Optimal estimation of slope vector in high-dimensional linear transformation models
    Tan, Xin Lu
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 169 : 179 - 204
  • [29] Design of c-optimal experiments for high-dimensional linear models
    Eftekhari, Hamid
    Banerjee, Moulinath
    Ritov, Ya'acov
    BERNOULLI, 2023, 29 (01) : 652 - 668
  • [30] NEARLY OPTIMAL MINIMAX ESTIMATOR FOR HIGH-DIMENSIONAL SPARSE LINEAR REGRESSION
    Zhang, Li
    ANNALS OF STATISTICS, 2013, 41 (04): : 2149 - 2175