Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation

被引:184
|
作者
Sale, JE
Calandrini, DM
Takata, M
Takeda, S
Neuberger, MS
机构
[1] MRC, Mol Biol Lab, Cambridge CB2 2QH, England
[2] Kawasaki Med Sch, Okayama 7010192, Japan
[3] Kyoto Univ, Fac Med, CREST Res Project, Sakyo Ku, Kyoto 6068501, Japan
关键词
D O I
10.1038/35091100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
After gene rearrangement, immunoglobulin V genes are further diversified by either somatic hypermutation or gene conversion(1). Hypermutation (in man and mouse) occurs by the fixation of individual, non-templated nucleotide substitutions. Gene conversion (in chicken) is templated by a set of upstream V pseudogenes. Here we show that if the RAD51 paralogues(2) XRCC2, XRCC3 or RAD51B are ablated the pattern of diversification of the immunoglobulin V gene in the chicken DT40 B-cell lymphoma line(3) exhibits a marked shift from one of gene conversion to one of somatic hypermutation. Non-templated, single-nucleotide substitutions are incorporated at high frequency specifically into the V domain, largely at G/C and with a marked hotspot preference. These mutant DT40 cell lines provide a tractable model for the genetic dissection of immunoglobulin hypermutation and the results support the idea that gene conversion and somatic hypermutation constitute distinct pathways for processing a common lesion in the immunoglobulin V gene. The marked induction of somatic hypermutation that is achieved by ablating the RAD51 paralogues is probably a consequence of modifying the recombination-mediated repair of such initiating lesions.
引用
收藏
页码:921 / 926
页数:7
相关论文
共 50 条
  • [31] SOMATIC HYPERMUTATION OF V(H)S107 GENES IS NOT ASSOCIATED WITH GENE CONVERSION AMONG FAMILY MEMBERS
    ROGERSON, BJ
    INTERNATIONAL IMMUNOLOGY, 1995, 7 (08) : 1225 - 1235
  • [32] The XRCC2 and XRCC3 repair genes are required for chromosome stability in mammalian cells
    Cui, X
    Brenneman, M
    Meyne, J
    Oshimura, M
    Goodwin, EH
    Chen, DJ
    MUTATION RESEARCH-DNA REPAIR, 1999, 434 (02): : 75 - 88
  • [33] The MRE11-RAD50-NBS1 complex accelerates somatic hypermutation and gene conversion of immunoglobulin variable regions
    Yabuki, M
    Fujii, MM
    Maizels, N
    NATURE IMMUNOLOGY, 2005, 6 (07) : 730 - 736
  • [34] A diverse repertoire of human immunoglobulin variable genes in a chicken B cell line is generated by both gene conversion and somatic hypermutation
    Leighton, Philip A.
    Schusser, Benjamin
    Yi, Henry
    Glanville, Jacob
    Harriman, William
    FRONTIERS IN IMMUNOLOGY, 2015, 6
  • [35] The MRE11-RAD50-NBS1 complex accelerates somatic hypermutation and gene conversion of immunoglobulin variable regions
    Munehisa Yabuki
    Monica M Fujii
    Nancy Maizels
    Nature Immunology, 2005, 6 : 730 - 736
  • [36] Association Studies Between XRCC1, XRCC2, XRCC3 Polymorphisms and Differentiated Thyroid Carcinoma
    Yan, Li
    Li, Qinghuai
    Li, Xiaoyu
    Ji, Hong
    Zhang, Linlei
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2016, 38 (03) : 1075 - 1084
  • [37] The Arg188His polymorphism in the XRCC2 gene and the risk of cancer
    Zhang, Yonggang
    Wang, Haichuan
    Peng, Yuanling
    Liu, Yuqi
    Xiong, Tianyuan
    Xue, Pei
    Du, Liang
    TUMOR BIOLOGY, 2014, 35 (04) : 3541 - 3549
  • [38] Polymorphisms in RAD51, XRCC2, and XRCC3 are not related to breast cancer risk
    Brooks, Jennifer
    Shore, Roy E.
    Zeleniuch-Jacquotte, Anne
    Currie, Diane
    Afanasyeva, Yelena
    Koenig, Karen L.
    Arslan, Alan A.
    Toniolo, Paolo
    Wirgin, Isaac
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2008, 17 (04) : 1016 - 1019
  • [39] Normal immunoglobulin gene somatic hypermutation in Polκ-Polι double-deficient mice
    Shimizu, T
    Azuma, T
    Ishiguro, M
    Kanjo, M
    Yamada, S
    Ohmori, H
    IMMUNOLOGY LETTERS, 2005, 98 (02) : 259 - 264
  • [40] Immunoglobulin VH gene diversity and somatic hypermutation during SIV infection of rhesus macaques
    Guo, Kejun
    Halemano, Kalani
    Schmitt, Kimberly
    Katuwal, Miki
    Wang, Yaqiong
    Harper, Michael S.
    Heilman, Karl J.
    Kuwata, Takeo
    Stephens, Edward B.
    Santiago, Mario L.
    IMMUNOGENETICS, 2015, 67 (07) : 355 - 370