Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation

被引:184
|
作者
Sale, JE
Calandrini, DM
Takata, M
Takeda, S
Neuberger, MS
机构
[1] MRC, Mol Biol Lab, Cambridge CB2 2QH, England
[2] Kawasaki Med Sch, Okayama 7010192, Japan
[3] Kyoto Univ, Fac Med, CREST Res Project, Sakyo Ku, Kyoto 6068501, Japan
关键词
D O I
10.1038/35091100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
After gene rearrangement, immunoglobulin V genes are further diversified by either somatic hypermutation or gene conversion(1). Hypermutation (in man and mouse) occurs by the fixation of individual, non-templated nucleotide substitutions. Gene conversion (in chicken) is templated by a set of upstream V pseudogenes. Here we show that if the RAD51 paralogues(2) XRCC2, XRCC3 or RAD51B are ablated the pattern of diversification of the immunoglobulin V gene in the chicken DT40 B-cell lymphoma line(3) exhibits a marked shift from one of gene conversion to one of somatic hypermutation. Non-templated, single-nucleotide substitutions are incorporated at high frequency specifically into the V domain, largely at G/C and with a marked hotspot preference. These mutant DT40 cell lines provide a tractable model for the genetic dissection of immunoglobulin hypermutation and the results support the idea that gene conversion and somatic hypermutation constitute distinct pathways for processing a common lesion in the immunoglobulin V gene. The marked induction of somatic hypermutation that is achieved by ablating the RAD51 paralogues is probably a consequence of modifying the recombination-mediated repair of such initiating lesions.
引用
收藏
页码:921 / 926
页数:7
相关论文
共 50 条
  • [1] Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation
    Julian E. Sale
    Daniella M. Calandrini
    Minoru Takata
    Shunichi Takeda
    Michael S. Neuberger
    Nature, 2001, 412 : 921 - 926
  • [2] Brca1 in immunoglobulin gene conversion and somatic hypermutation
    Longerich, Simonne
    Orelli, Brian J.
    Martin, Richard W.
    Bishop, Douglas K.
    Storb, Ursula
    DNA REPAIR, 2008, 7 (02) : 253 - 266
  • [4] Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences
    Yang, Shu Yuan
    Fugmann, Sebastian D.
    Schatz, David G.
    JOURNAL OF EXPERIMENTAL MEDICINE, 2006, 203 (13): : 2919 - 2928
  • [5] XRCC2 and XRCC3 gene polymorphism and risk of pancreatic cancer
    Jiao, Li
    Hassan, Manal M.
    Bondy, Melissa L.
    Wolff, Robert A.
    Evans, Douglas B.
    Abbruzzese, James L.
    Li, Donghui
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2008, 103 (02): : 360 - 367
  • [6] Analysis of XRCC2 and XRCC3 gene polymorphisms in pancreatic cancer
    Talar-Wojnarowska, Renata
    Gasiorowska, Anita
    Olakowski, Marek
    Dranka-Bojarowska, Daria
    Lampe, Pawel
    Smolarz, Beata
    Malecka-Panas, Ewa
    BIOMEDICAL REPORTS, 2016, 4 (02) : 236 - 240
  • [7] Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID
    Wang, Meng
    Rada, Cristina
    Neuberger, Michael S.
    JOURNAL OF EXPERIMENTAL MEDICINE, 2010, 207 (01): : 141 - 153
  • [8] Defect in immunoglobulin V gene somatic hypermutation in common variable immunodeficiency syndrome (CVID).
    Levy, Y
    Gupta, N
    Ledeist, F
    Fischer, A
    Weill, JC
    Reynaud, CA
    BLOOD, 1998, 92 (10) : 302A - 302A
  • [9] In vivo and in vitro studies of immunoglobulin gene somatic hypermutation
    Sale, JE
    Bemark, M
    Williams, GT
    Jolly, CJ
    Ehrenstein, MR
    Rada, C
    Milstein, C
    Neuberger, MS
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2001, 356 (1405) : 21 - 28
  • [10] Association of XRCC1, XRCC2 and XRCC3 Gene Polymorphism with Esophageal Cancer Risk
    Kaur, Jagjeet
    Sambyal, Vasudha
    Guleria, Kamlesh
    Singh, Neeti Rajan
    Uppal, Manjit Singh
    Manjari, Mridu
    Sudan, Meena
    CLINICAL AND EXPERIMENTAL GASTROENTEROLOGY, 2020, 13 : 73 - 86