Szego kernel equivariant asymptotics under Hamiltonian Lie group actions

被引:1
|
作者
Paoletti, Roberto [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via R Cozzi 55, I-20126 Milan, Italy
关键词
Hamiltonian action; Moment map; Hardy space; Szego kernel; Scaling asymptotics; MULTIPLICITIES; QUANTIZATION;
D O I
10.1007/s12220-021-00829-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that a compact and connected Lie group G acts on a complex Hodge manifold M in a holomorphic and Hamiltonian manner, and that the action linearizes to a positive holomorphic line bundle A on M. Then there is an induced unitary representation on the associated Hardy space and, if the moment map of the action is nowhere vanishing, the corresponding isotypical components are all finite dimensional. We study the asymptotic concentration behavior of the corresponding equivariant Szego kernels near certain loci defined by the moment map.
引用
收藏
页数:32
相关论文
共 50 条