The fractional Tikhonov regularization methods for identifying the initial value problem for a time-fractional diffusion equation

被引:25
|
作者
Yang, Fan [1 ]
Pu, Qu [1 ]
Li, Xiao-Xiao [1 ]
机构
[1] Lanzhou Univ Technol, Sch Sci, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Time-fractional diffusion equation; Columnar axis-symmetric domain; Fractional Tikhonov method; III-posed problem; BOUNDARY-VALUE PROBLEMS; SPACE-DEPENDENT SOURCE; UNKNOWN SOURCE; SOURCE-TERM; ITERATION REGULARIZATION;
D O I
10.1016/j.cam.2020.112998
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we identify the initial value for a time-fractional diffusion equation on a columnar axis-symmetric domain. This problem is ill-posed, i.e., the solution (if it exists) does not depend continuously on the domain. Two different kinds of fractional Tikhonov methods are used to solve this problem. Under the a priori and the a posteriori regularization parameter choice rules, the error estimates between the regularization solutions and the exact solution are obtained, respectively. Different numerical examples are presented to illustrate the validity and effectiveness of our methods. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Fractional Landweber Iterative Regularization Method for Identifying the Unknown Source of the Time-Fractional Diffusion Problem
    Yang, Fan
    Fu, Jun-Liang
    Fan, Ping
    Li, Xiao-Xiao
    ACTA APPLICANDAE MATHEMATICAE, 2021, 175 (01)
  • [32] Iteration regularization method for a sideways problem of time-fractional diffusion equation
    Zhang, Hongwu
    Lv, Yong
    NUMERICAL ALGORITHMS, 2022, 91 (03) : 1145 - 1163
  • [33] Regularization of a sideways problem for a time-fractional diffusion equation with nonlinear source
    Tran Bao Ngoc
    Nguyen Huy Tuan
    Kirane, Mokhtar
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (02): : 211 - 235
  • [34] FILTER REGULARIZATION FOR AN INVERSE SOURCE PROBLEM OF THE TIME-FRACTIONAL DIFFUSION EQUATION
    Shi, Wan-Xia
    Xiong, Xiang-Tuan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 1702 - 1719
  • [35] Iteration regularization method for a sideways problem of time-fractional diffusion equation
    Hongwu Zhang
    Yong Lv
    Numerical Algorithms, 2022, 91 : 1145 - 1163
  • [36] Fractional Landweber Iterative Regularization Method for Identifying the Unknown Source of the Time-Fractional Diffusion Problem
    Fan Yang
    Jun-Liang Fu
    Ping Fan
    Xiao-Xiao Li
    Acta Applicandae Mathematicae, 2021, 175
  • [37] Regularization of a terminal value problem for time fractional diffusion equation
    Nguyen Anh Triet
    Vo Van Au
    Le Dinh Long
    Baleanu, Dumitru
    Nguyen Huy Tuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3850 - 3878
  • [38] Two Regularization Methods for Identifying the Source Term Problem on the Time-Fractional Diffusion Equation with a Hyper-Bessel Operator
    Fan Yang
    Qiaoxi Sun
    Xiaoxiao Li
    Acta Mathematica Scientia, 2022, 42 : 1485 - 1518
  • [39] Two Regularization Methods for Identifying the Source Term Problem on the Time-Fractional Diffusion Equation with a Hyper-Bessel Operator
    Yang, Fan
    Sun, Qiaoxi
    Li, Xiaoxiao
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (04) : 1485 - 1518
  • [40] Solvability in Holder Space of an Initial Boundary Value Problem for the Time-Fractional Diffusion Equation
    Krasnoschok, M. V.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2016, 12 (01) : 48 - 77