Fitness peak clustering based dynamic multi-swarm particle swarm optimization with enhanced learning strategy

被引:22
|
作者
Tao, Xinmin [1 ]
Guo, Wenjie [1 ]
Li, Xiangke [1 ]
He, Qing [1 ]
Liu, Rui [1 ]
Zou, Junrong [1 ]
机构
[1] Northeast Forestry Univ, Coll Engn & Technol, 26 Hexing Rd, Harbin 150040, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Particle swarm optimization; Comprehensive learning; Fitness Peak clustering; Enhanced learning strategy; ARTIFICIAL BEE COLONY; GLOBAL OPTIMIZATION; NEURAL-NETWORK; ALGORITHM; TOPOLOGY; SEARCH; PSO;
D O I
10.1016/j.eswa.2021.116301
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle Swarm Optimization (PSO) is a well-known swarm intelligence algorithm and its performance primarily depends on the tradeoff between exploration and exploitation. In order to well balance the exploration and exploitation, this paper presents a fitness peak clustering based dynamic multi-swarm Particle Swarm Optimization (FPCMSPSO) with enhanced learning strategy. In the presented FPCMSPSO, first, FPC-based partitioning method is utilized to divide the initialized population into several sub-swarms so as to avoid crossover evolution caused by random partitioning. These sub-swarms evolve independently based on comprehensive learning strategy and along with further evolution they would merge into a global swarm according to their own stagnancy information. Second, an enhanced learning strategy is exploited to some particles, and their velocities are updated based on learning exemplars alternately generated by comprehensive learning or dimensional learning strategies according to their stagnancy information. Extensive experimental results demonstrate that the solution accuracy, convergence speed and stability of FPCMSPSO are remarkably improved due to the usage of above strategies. The comparative results of FPCMSPSO with other existing PSO variants on various optimization problems show that FPCMSPSO statistically outperforms other PSO variants with significant difference.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Reconfiguration of Distribution Network Based on Improved Dynamic Multi-Swarm Particle Swarm Optimization
    Li Han
    Zhang Xuexia
    Guo Zhiqi
    Wang Xindi
    Ye Shengyong
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 9952 - 9956
  • [22] A Multi-swarm Competitive Algorithm Based on Dynamic Task Allocation Particle Swarm Optimization
    Zhang, Lingjie
    Sun, Jianbo
    Guo, Chen
    Zhang, Hui
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2018, 43 (12) : 8255 - 8274
  • [23] A Multi-swarm Particle Swarm Optimization with Orthogonal Learning for Locating and Tracking Multiple Optimization in Dynamic Environments
    Liu, Ruochen
    Niu, Xu
    Jiao, Licheng
    Ma, Jingjing
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 754 - 761
  • [24] A novel parallel multi-swarm algorithm based on comprehensive learning particle swarm optimization
    Gulcu, Saban
    Kodaz, Halife
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2015, 45 : 33 - 45
  • [25] Enhanced multi-swarm cooperative particle swarm optimizer
    Lu, Jiawei
    Zhang, Jian
    Sheng, Jianan
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 69
  • [26] Multi-swarm Particle Swarm Optimizer with Cauchy Mutation for Dynamic Optimization Problems
    Hu, Chengyu
    Wu, Xiangning
    Wang, Yongji
    Xie, Fuqiang
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2009, 5821 : 443 - +
  • [27] A Multi-Swarm Cooperative Perturbed Particle Swarm Optimization
    Yang, Xiangjun
    Zhao, Yilong
    Chen, Yuchuang
    Zhao, Xinchao
    ADVANCED RESEARCH ON AUTOMATION, COMMUNICATION, ARCHITECTONICS AND MATERIALS, PTS 1 AND 2, 2011, 225-226 (1-2): : 619 - 622
  • [28] Fully Learned Multi-swarm Particle Swarm Optimization
    Niu, Ben
    Huang, Huali
    Ye, Bin
    Tan, Lijing
    Liang, Jane Jing
    ADVANCES IN SWARM INTELLIGENCE, PT1, 2014, 8794 : 150 - 157
  • [29] Applying Multi-Swarm Accelerating Particle Swarm Optimization to Dynamic Continuous Functions
    Jiang, Yi
    Huang, Wei
    Chen, Li
    WKDD: 2009 SECOND INTERNATIONAL WORKSHOP ON KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, : 710 - +
  • [30] Multi-swarm Particle Swarm Optimization Based on Mixed Search Behavior
    Jie, Jing
    Wang, Wanliang
    Liu, Chunsheng
    Hou, Beiping
    ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 2, 2010, : 32 - +