Geostatistical Framework for Estimation of VS30 in Data-Scarce Regions

被引:2
|
作者
Gilder, Charlotte E. L. [1 ]
De Risi, Raffaele [1 ]
De Luca, Flavia [1 ]
Pokhrel, Rama Mohan [1 ]
Vardanega, Paul J. [1 ]
机构
[1] Univ Bristol, Dept Civil Engn, Univ Walk, Bristol, England
基金
英国工程与自然科学研究理事会;
关键词
SEISMIC SITE CONDITIONS; TOPOGRAPHIC SLOPE; SAFER GEODATABASE; PROXY; MAP; CALIFORNIA; V-S30; MODEL; PREDICTION; VELOCITY;
D O I
10.1785/0120210266
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The time-averaged shear-wave velocity in the upper 30 m (VS30) is widely used as a proxy for site characterization in building codes. Regional estimations of VS30 often use either slope-based, terrain-based, or geological approaches as a proxy. This technique has proven useful at a number of locations globally, and slope-based estimates formed the basis of the original global VS30 model implemented by the U.S. Geological Survey. Geostatistical mod-els involve the study of potentially spatially correlated parameters. Modeling challenges arise when parameters are scarce or uncertain, and traditional geostatistical workflows cannot be implemented in all settings. In this study, the benefits of the spatial extents of VS30 proxies are used to supplement local data to implement a methodology for improv-ing estimates using a multi-Gaussian Bayesian updating framework. This methodology is presented in the context of a data-scarce region, specifically, the Kathmandu Valley in Nepal. Using geostatistical approaches typically used by the petroleum industry, this article develops a novel practice-oriented framework for VS30 estimation that can be adapted for use on a region-by-region basis. This framework provides an informed estimate and assessment of the uncertainties in which quantification of VS30 is required in geotechnical earthquake engineering applications.
引用
收藏
页码:2981 / 3000
页数:20
相关论文
共 50 条
  • [1] A drought monitoring framework for data-scarce regions
    Real-Rangel, Roberto A.
    Pedrozo-Acuna, Adrian
    Agustin Brena-Naranjo, J.
    Alcocer-Yamanaka, Victor H.
    JOURNAL OF HYDROINFORMATICS, 2020, 22 (01) : 170 - 185
  • [2] Estimation of spatially distributed groundwater recharge in data-scarce regions
    Belay, Ashebir Sewale
    Yenehun, Alemu
    Nigate, Fenta
    Tilahun, Seifu A.
    Dessie, Mekete
    Moges, Michael M.
    Chen, Margaret
    Fentie, Derbew
    Adgo, Enyew
    Nyssen, Jan
    Walraevens, Kristine
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2024, 56
  • [3] SnowCloudHydroA New Framework for Forecasting Streamflow in Snowy, Data-Scarce Regions
    Sproles, Eric A.
    Crumley, Ryan L.
    Nolin, Anne W.
    Mar, Eugene
    Lopez Moreno, Juan Ignacio
    REMOTE SENSING, 2018, 10 (08)
  • [4] Towards catchment classification in data-scarce regions
    Auerbach, Daniel A.
    Buchanan, Brian P.
    Alexiades, Alexander V.
    Anderson, Elizabeth P.
    Encalada, Andrea C.
    Larson, Erin I.
    McManamay, Ryan A.
    Poe, Gregory L.
    Walter, M. Todd
    Flecker, Alexander S.
    ECOHYDROLOGY, 2016, 9 (07) : 1235 - 1247
  • [5] A Probabilistic Framework to Model Distributions of VS30
    Mital, Utkarsh
    Ahdi, Sean
    Herrick, Julie
    Iwahashi, Junko
    Savvaidis, Alexandros
    Yong, Alan
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2021, 111 (04) : 1677 - 1692
  • [6] Improving parameter priors for data-scarce estimation problems
    Almeida, Susana
    Bulygina, Nataliya
    McIntyre, Neil
    Wagener, Thorsten
    Buytaert, Wouter
    WATER RESOURCES RESEARCH, 2013, 49 (09) : 6090 - 6095
  • [7] A framework for event-based flood scaling analysis by hydrological modeling in data-scarce regions
    Li, Jianzhu
    Lei, Kun
    Zhang, Ting
    Zhong, Wei
    Kang, Aiqing
    Ma, Qiushuang
    Feng, Ping
    HYDROLOGY RESEARCH, 2020, 51 (05): : 1091 - 1103
  • [8] Prediction of Runoff in Watersheds Located within Data-Scarce Regions
    Ghanim, Abdulnoor A. J.
    Beddu, Salmia
    Abd Manan, Teh Sabariah Binti
    Al Yami, Saleh H.
    Irfan, Muhammad
    Mursal, Salim Nasar Faraj
    Kamal, Nur Liyana Mohd
    Mohamad, Daud
    Machmudah, Affiani
    Yavari, Saba
    Mohtar, Wan Hanna Melini Wan
    Ahmad, Amirrudin
    Rasdi, Nadiah Wan
    Khan, Taimur
    SUSTAINABILITY, 2022, 14 (13)
  • [9] Forecasting fierce floods with transferable AI in data-scarce regions
    Wang, Hui-Min
    Peng, Xiao
    He, Xiaogang
    INNOVATION, 2024, 5 (04):
  • [10] Landslide susceptibility analysis in data-scarce regions: the case of Kyrgyzstan
    Annamaria Saponaro
    Marco Pilz
    Marc Wieland
    Dino Bindi
    Bolot Moldobekov
    Stefano Parolai
    Bulletin of Engineering Geology and the Environment, 2015, 74 : 1117 - 1136