A drought monitoring framework for data-scarce regions

被引:7
|
作者
Real-Rangel, Roberto A. [1 ,2 ]
Pedrozo-Acuna, Adrian [1 ]
Agustin Brena-Naranjo, J. [1 ]
Alcocer-Yamanaka, Victor H. [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Engn, Circuito Escolar S-N,Ciudad Univ, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Program Master & Doctorate Engn, Univ 3000,Ciudad Univ, Mexico City 04510, DF, Mexico
[3] Natl Water Commiss, Insurgentes Sur 2416, Mexico City 04340, DF, Mexico
关键词
drought monitoring; Mexico; Multivariate Standardized Drought Index (MSDI); Standardized Precipitation Index (SPI); Standardized Runoff Index (SRI); Standardized Soil Moisture Index (SSI); IMPACTS; PRECIPITATION; INDEXES;
D O I
10.2166/hydro.2019.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Drought monitoring is a critical activity for drought risk management; however, the lack of ground-based observations of climatological and hydrological variables in many regions of the world hinders an adequate follow-up and investigation of this phenomenon. This paper introduces a transparent framework for monitoring the spatio-temporal distribution of drought hazard based on uni- and multivariate standardized drought indices that use reanalysis datasets of hydrological variables available freely and globally. In the case study of the 2015-2017 East-Southwest drought in Mexico, the introduced framework successfully detected the spatial and temporal patterns of drought conditions, even in regions where a benchmark drought monitoring system failed to detect deficits. In addition, the ability of the introduced framework to detect drought impacts on the annual agricultural maize production in Mexico was evaluated using data of 1980-2018, yielding scores of the false alarm ratio =0.32, the probability of detection = 0.71, and the proportion correct = 0.68 for the analysis at the national scale. Currently, the framework provides a significant extension to the capabilities for national drought monitoring, and it is being used by the Mexican water authority in the decision-making process related to drought severity assessment.
引用
收藏
页码:170 / 185
页数:16
相关论文
共 50 条
  • [1] SnowCloudHydroA New Framework for Forecasting Streamflow in Snowy, Data-Scarce Regions
    Sproles, Eric A.
    Crumley, Ryan L.
    Nolin, Anne W.
    Mar, Eugene
    Lopez Moreno, Juan Ignacio
    REMOTE SENSING, 2018, 10 (08)
  • [2] Geostatistical Framework for Estimation of VS30 in Data-Scarce Regions
    Gilder, Charlotte E. L.
    De Risi, Raffaele
    De Luca, Flavia
    Pokhrel, Rama Mohan
    Vardanega, Paul J.
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2022, 112 (06) : 2981 - 3000
  • [3] Towards catchment classification in data-scarce regions
    Auerbach, Daniel A.
    Buchanan, Brian P.
    Alexiades, Alexander V.
    Anderson, Elizabeth P.
    Encalada, Andrea C.
    Larson, Erin I.
    McManamay, Ryan A.
    Poe, Gregory L.
    Walter, M. Todd
    Flecker, Alexander S.
    ECOHYDROLOGY, 2016, 9 (07) : 1235 - 1247
  • [4] A framework for event-based flood scaling analysis by hydrological modeling in data-scarce regions
    Li, Jianzhu
    Lei, Kun
    Zhang, Ting
    Zhong, Wei
    Kang, Aiqing
    Ma, Qiushuang
    Feng, Ping
    HYDROLOGY RESEARCH, 2020, 51 (05): : 1091 - 1103
  • [5] Uncertainty of drought information in a data-scarce tropical river basin
    Wambura, Frank Joseph
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2020, 32
  • [6] Estimation of spatially distributed groundwater recharge in data-scarce regions
    Belay, Ashebir Sewale
    Yenehun, Alemu
    Nigate, Fenta
    Tilahun, Seifu A.
    Dessie, Mekete
    Moges, Michael M.
    Chen, Margaret
    Fentie, Derbew
    Adgo, Enyew
    Nyssen, Jan
    Walraevens, Kristine
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2024, 56
  • [7] Prediction of Runoff in Watersheds Located within Data-Scarce Regions
    Ghanim, Abdulnoor A. J.
    Beddu, Salmia
    Abd Manan, Teh Sabariah Binti
    Al Yami, Saleh H.
    Irfan, Muhammad
    Mursal, Salim Nasar Faraj
    Kamal, Nur Liyana Mohd
    Mohamad, Daud
    Machmudah, Affiani
    Yavari, Saba
    Mohtar, Wan Hanna Melini Wan
    Ahmad, Amirrudin
    Rasdi, Nadiah Wan
    Khan, Taimur
    SUSTAINABILITY, 2022, 14 (13)
  • [8] Forecasting fierce floods with transferable AI in data-scarce regions
    Wang, Hui-Min
    Peng, Xiao
    He, Xiaogang
    INNOVATION, 2024, 5 (04):
  • [9] Landslide susceptibility analysis in data-scarce regions: the case of Kyrgyzstan
    Annamaria Saponaro
    Marco Pilz
    Marc Wieland
    Dino Bindi
    Bolot Moldobekov
    Stefano Parolai
    Bulletin of Engineering Geology and the Environment, 2015, 74 : 1117 - 1136
  • [10] Landslide susceptibility analysis in data-scarce regions: the case of Kyrgyzstan
    Saponaro, Annamaria
    Pilz, Marco
    Wieland, Marc
    Bindi, Dino
    Moldobekov, Bolot
    Parolai, Stefano
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2015, 74 (04) : 1117 - 1136