Detection of Gait From Continuous Inertial Sensor Data Using Harmonic Frequencies

被引:20
|
作者
Ullrich, Martin [1 ]
Kuederle, Arne [1 ]
Hannink, Julius [2 ]
Del Din, Silvia [3 ]
Gassner, Heiko [4 ]
Marxreiter, Franz [4 ]
Klucken, Jochen [4 ]
Eskofier, Bjoern M. [1 ]
Kluge, Felix [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Comp Sci, Machine Learning & Data Analyt Lab, D-91054 Erlangen, Germany
[2] Portabiles HealthCare Technol GmbH, D-91052 Erlangen, Germany
[3] Newcastle Univ, Inst Neurosci Newcastle, Campus Ageing & Vital, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[4] Univ Hosp Erlangen, Dept Mol Neurol, D-91054 Erlangen, Bavaria, Germany
基金
欧盟地平线“2020”; 英国惠康基金;
关键词
Legged locomotion; Harmonic analysis; Informatics; Diseases; Foot; Sensitivity; Biomedical measurement; Accelerometer; Fourier transform; gyroscope; Parkinson's disease (PD); walking bouts; ACCELEROMETER; WALKING; FOOT;
D O I
10.1109/JBHI.2020.2975361
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile gait analysis using wearable inertial measurement units (IMUs) provides valuable insights for the assessment of movement impairments in different neurological and musculoskeletal diseases, for example Parkinson's disease (PD). The increase in data volume due to arising long-term monitoring requires valid, robust and efficient analysis pipelines. In many studies an upstream detection of gait is therefore applied. However, current methods do not provide a robust way to successfully reject non-gait signals. Therefore, we developed a novel algorithm for the detection of gait from continuous inertial data of sensors worn at the feet. The algorithm is focused not only on a high sensitivity but also a high specificity for gait. Sliding windows of IMU signals recorded from the feet of PD patients were processed in the frequency domain. Gait was detected if the frequency spectrum contained specific patterns of harmonic frequencies. The approach was trained and evaluated on 150 clinical measurements containing standardized gait and cyclic movement tests. The detection reached a sensitivity of 0.98 and a specificity of 0.96 for the best sensor configuration (angular rate around the medio-lateral axis). On an independent validation data set including 203 unsupervised, semi-standardized gait tests, the algorithm achieved a sensitivity of 0.97. Our algorithm for the detection of gait from continuous IMU signals works reliably and showed promising results for the application in the context of free-living and non-standardized monitoring scenarios.
引用
收藏
页码:1869 / 1878
页数:10
相关论文
共 50 条
  • [21] Gait evaluation of normal pressure hydrocephalus using inertial sensor
    Ono, Y.
    Ora, H.
    Kiko, Y.
    Hori, K.
    Hirobe, Y.
    Miyagi, A.
    Mitou, T.
    Higuma, M.
    Wada, Y.
    Miyake, Y.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2017, 381 : 722 - 722
  • [22] Developing a Hybrid Machine Learning System for Parkinson's Disease Detection Using a Combination of Freezing of Gait Video and Inertial Sensor Data
    Zhou, Caroline
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [23] Real-World Gait Detection Using a Wrist-Worn Inertial Sensor:Validation Study
    Kluge, Felix
    Brand, Yonatan E.
    Mico-Amigo, M. Encarna
    Bertuletti, Stefano
    D'Ascanio, Ilaria
    Gazit, Eran
    Bonci, Tecla
    Kirk, Cameron
    Kuederle, Arne
    Palmerini, Luca
    Paraschiv-Ionescu, Anisoara
    Salis, Francesca
    Soltani, Abolfazl
    Ullrich, Martin
    Alcock, Lisa
    Aminian, Kamiar
    Becker, Clemens
    Brown, Philip
    Buekers, Joren
    Carsin, Anne-Elie
    Caruso, Marco
    Caulfield, Brian
    Cereatti, Andrea
    Chiari, Lorenzo
    Echevarria, Carlos
    Eskofier, Bjoern
    Evers, Jordi
    Garcia-Aymerich, Judith
    Hache, Tilo
    Hansen, Clint
    Hausdorff, Jeffrey M.
    Hiden, Hugo
    Hume, Emily
    Keogh, Alison
    Koch, Sarah
    Maetzler, Walter
    Megaritis, Dimitrios
    Niessen, Martijn
    Perlman, Or
    Schwickert, Lars
    Scott, Kirsty
    Sharrack, Basil
    Singleton, David
    Vereijken, Beatrix
    Vogiatzis, Ioannis
    Yarnall, Alison
    Rochester, Lynn
    Mazza, Claudia
    Del Din, Silvia
    Mueller, Arne
    JMIR FORMATIVE RESEARCH, 2024, 8
  • [24] Detection of patient motion using an inertial sensor
    DiFilippo, Frank
    Austin, Kimberly
    Patel, Sagar
    Huang, Steve
    JOURNAL OF NUCLEAR MEDICINE, 2011, 52
  • [25] Gait analysis of pregnant patients with lumbopelvic pain using inertial sensor
    Tanigawa, Ayumi
    Morino, Saori
    Aoyama, Tomoki
    Takahashi, Masaki
    GAIT & POSTURE, 2018, 65 : 176 - 181
  • [26] Identification of Gait Motion Patterns Using Wearable Inertial Sensor Network
    Moon, Kee S.
    Lee, Sung Q.
    Ozturk, Yusuf
    Gaidhani, Apoorva
    Cox, Jeremiah A.
    SENSORS, 2019, 19 (22)
  • [27] Data Augmentation for Inertial Sensor-Based Gait Deep Neural Network
    Tran, Lam
    Choi, Deokjai
    IEEE ACCESS, 2020, 8 : 12364 - 12378
  • [28] PREDICTION OF THE SPATIO-TEMPORAL GAIT PARAMETERS USING INERTIAL SENSOR
    Liu, Jian
    Lockhart, Thurmon
    Kim, Sukwon
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2018, 18 (07)
  • [29] Human Gait Feature Detection Using Inertial Sensors Wavelets
    Glowinski, S.
    Blazejewski, A.
    Krzyzynski, T.
    WEARABLE ROBOTICS: CHALLENGES AND TRENDS, 2017, 16 : 397 - 401
  • [30] Research on detection method for abnormal gait using three-dimensional thigh motion analysis with inertial sensor
    Shiotani M.
    Watanabe T.
    Murakami K.
    Kuge N.
    Transactions of Japanese Society for Medical and Biological Engineering, 2019, 57 (01) : 1 - 7