Data Assimilation in Large Prandtl Rayleigh-Benard Convection from Thermal Measurements

被引:31
|
作者
Farhat, A. [1 ]
Glatt-Holtz, N. E. [2 ]
Martinez, V. R. [3 ]
McQuarrie, S. A. [4 ]
Whitehead, J. P. [5 ]
机构
[1] Florida State Univ, Math, Tallahassee, FL 32306 USA
[2] Tulane Univ, New Orleans, LA 70118 USA
[3] CUNY, Hunter Coll, Math & Stat, New York, NY 10065 USA
[4] Univ Texas, Inst Computat Engn Sci, Austin, TX 78712 USA
[5] Brigham Young Univ, Math, Provo, UT 84602 USA
来源
关键词
data assimilation; Rayleigh-Benard convection; large Prandtl limit; BOUSSINESQ SYSTEM; DETERMINING NODES; HEAT-TRANSPORT; ALGORITHM; NUMBER; EQUATIONS; TEMPERATURE; VELOCITY; ATTRACTORS; TURBULENCE;
D O I
10.1137/19M1248327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work applies a continuous data assimilation scheme-a framework for reconciling sparse and potentially noisy observations to a mathematical model-to Rayleigh-Benard convection at infinite or large Prandtl numbers using only the temperature field as observables. These Prandtl numbers are applicable to the earth's mantle and to gases under high pressure. We rigorously identify conditions that guarantee synchronization between the observed system and the model, then confirm the applicability of these results via numerical simulations. Our numerical experiments show that the analytically derived conditions for synchronization are far from sharp; that is, synchronization often occurs even when sufficient conditions of our theorems are not met. We also develop estimates on the convergence of an infinite Prandtl model to a large (but finite) Prandtl number generated set of observations. Numerical simulations in this hybrid setting indicate that the mathematically rigorous results are accurate, but of practical interest only for extremely large Prandtl numbers.
引用
收藏
页码:510 / 540
页数:31
相关论文
共 50 条
  • [21] Rayleigh-Benard convection at large aspect ratios
    Hartlep, T
    Tilgner, A
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING'03, 2003, : 343 - 357
  • [22] Thermal radiation in Rayleigh-Benard convection experiments
    Urban, P.
    Kralik, T.
    Hanzelka, P.
    Musilova, V
    Veznik, T.
    Schmoranzer, D.
    Skrbek, L.
    PHYSICAL REVIEW E, 2020, 101 (04)
  • [23] Rayleigh-Benard convection with thermal boundary inhomogeneities
    Bassani, Francesca
    Poggi, Davide
    Ridolfi, Luca
    von Hardenberg, Jost
    PHYSICAL REVIEW E, 2022, 105 (02)
  • [24] Turbulent thermal superstructures in Rayleigh-Benard convection
    Stevens, Richard J. A. M.
    Blass, Alexander
    Zhu, Xiaojue
    Verzicco, Roberto
    Lohse, Detlef
    PHYSICAL REVIEW FLUIDS, 2018, 3 (04):
  • [25] Asymptotic behavior of the global attractors to the Boussinesq system for Rayleigh-Benard convection at large Prandtl number
    Wang, Xiaoming
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (09) : 1293 - 1318
  • [26] Large-scale Vortices in Rapidly Rotating Rayleigh-Benard Convection at Small Prandtl number
    Cai, Tao
    ASTROPHYSICAL JOURNAL, 2021, 923 (02):
  • [27] Instabilities and chaos in low-Prandtl number rayleigh-Benard convection
    Nandukumar, Yada
    Pal, Pinaki
    COMPUTERS & FLUIDS, 2016, 138 : 61 - 66
  • [28] Dynamic bifurcation theory of Rayleigh-Benard convection with infinite Prandtl number
    Park, Jungho
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2006, 6 (03): : 591 - 604
  • [29] Patterns and bifurcations in low-Prandtl-number Rayleigh-Benard convection
    Mishra, P. K.
    Wahi, P.
    Verma, M. K.
    EPL, 2010, 89 (04)
  • [30] Turbulent Rayleigh-Benard convection in low Prandtl-number fluids
    Horanyi, S
    Krebs, L
    Müller, U
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1999, 42 (21) : 3983 - 4003