Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity

被引:62
|
作者
Lee, Donghee [1 ]
Yang, Sung [1 ,2 ,3 ]
机构
[1] GIST, Grad Program Med Syst Engn, Kwangju 500712, South Korea
[2] GIST, Sch Mechatron, Kwangju 500712, South Korea
[3] GIST, Dept Nanobio Mat & Elect, Kwangju 500712, South Korea
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2012年 / 162卷 / 01期
基金
新加坡国家研究基金会;
关键词
PDMS; Surface modification; Atmospheric-pressure plasma-enhanced chemical vapor deposition; Hydrophilicity; Surface analysis; Plasma polymerization; RGP CONTACT-LENS; MICROFLUIDIC CHANNELS; HYDROPHOBIC RECOVERY; POLY(DIMETHYLSILOXANE); COATINGS; FABRICATION; FILMS; JET;
D O I
10.1016/j.snb.2011.12.017
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Atmospheric-pressure plasma-enhanced chemical vapor deposition (AP-PECVD) offers several benefits such as simplicity, high productivity, and versatility. An AP-PECVD-based method is proposed in this study to modify hydrophobic PDMS (polydimethylsiloxane) surfaces towards a long-lasting hydrophilic character. To enhance the sustainability of the hydrophilicity, two kinds of layers were sequentially deposited by AP-PECVD on the surface of a PDMS block (TEOS-O-2/CH4/PDMS). A hydrocarbon layer was first coated on the bare PDMS surface using CH4 as the reactant, and then, a hydrophilic SiOx layer was deposited using tetraethyl orthosilicate and oxygen (TEOS-O-2). The highly cross-linked hydrocarbon layer acted as a physical barrier layer (PBL) between the bare PDMS surface and the hydrophilic layer. To confirm that the PBL suppresses the hydrophobic recovery of the modified PDMS surface with double layer, a single-layer-coated PDMS sample (TEOS-O-2/PDMS) without the PBL was prepared by AP-PECVD using TEOS-O-2. The surface characteristics were determined by static contact angle measurements, surface roughness measurements, and surface chemical composition/chemical bonding determination and compared with those of modified PDMS surface with double layer. The surface morphology of TEOS-O-2/PDMS degraded seriously by the diffusion of PDMS oligomers to the hydrophilic layer, but that of TEOS-O-2/CH4/PDMS was sustained for a long time. Thus, TEOS-O-2/CH4/PDMS had the lowest contact angle, almost 0 degrees, and showed long-lasting surface hydrophilicity, with almost no change in the contact angle for 28 days. Thus, this proposed method is confirmed to be well suited for use in applications that require stable hydrophilic surface property in PDMS. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:425 / 434
页数:10
相关论文
共 50 条
  • [41] Polytetrafluoroethylene Surface Modification Using Atmospheric-Pressure Plasma Polymerization
    Roh, Hee-Sang
    Lee, Chang-Min
    Kim, Byung-Hoon
    Kim, Su-Yeong
    Jung, Sang-Chul
    Kook, Min-Suk
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (11) : 11964 - 11967
  • [42] Two atmospheric-pressure plasma sources for polymer surface modification
    Yang, Shujun
    Yin, Hong
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2007, 27 (01) : 23 - 33
  • [43] Two Atmospheric-pressure Plasma Sources for Polymer Surface Modification
    Shujun Yang
    Hong Yin
    Plasma Chemistry and Plasma Processing, 2007, 27 : 23 - 33
  • [44] SURFACE SCIENCE AT ATMOSPHERIC-PRESSURE - RECONSTRUCTIONS ON (001) GAAS IN ORGANOMETALLIC CHEMICAL VAPOR-DEPOSITION
    KAMIYA, I
    ASPNES, DE
    TANAKA, H
    FLOREZ, LT
    HARBISON, JP
    BHAT, R
    PHYSICAL REVIEW LETTERS, 1992, 68 (05) : 627 - 630
  • [45] Characteristics of SiOx Thin Film Deposited by Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition Using PDMS/O2/He
    Lee, J. H.
    Kim, Y. S.
    Oh, J. S.
    Kyung, S. J.
    Lim, J. T.
    Yeom, G. Y.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (07) : D248 - D252
  • [46] Characteristics of Silicon Films Deposited by Atmospheric-Pressure Plasma-Enhanced Chemical Transport
    Naito, Teruki
    Yokoyama, Yoshinori
    Konno, Nobuaki
    Tokunaga, Takashi
    Itoh, Toshihiro
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2013, 96 (08) : 26 - 31
  • [47] Continuous Synthesis of Carbon Nanotubes Using a Plasma-Enhanced Chemical Vapor Deposition System at Atmospheric Pressure
    Shin, Seok Seung
    Choi, Bum Ho
    Kim, Young Mi
    Kim, Young Baek
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (06) : 06FF091 - 06FF094
  • [48] Insights into the Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition of Thin Films from Methyldisiloxane Precursors
    Fanelli, Fiorenza
    Lovascio, Sara
    d'Agostino, Riccardo
    Fracassi, Francesco
    PLASMA PROCESSES AND POLYMERS, 2012, 9 (11-12) : 1132 - 1143
  • [49] Low-Temperature Epitaxial Growth by Quiescent Plasma-Enhanced Chemical Vapor Deposition at Atmospheric Pressure
    Song, Chang-Hun
    Ryu, Hwa-Yeon
    Oh, Hoonjung
    Baik, Seung Jae
    Ko, Dae-Hong
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2022, 11 (12)
  • [50] Low-Temperature Atmospheric-Pressure Plasma-Enhanced Chemical Deposition of Silicon Dioxide Films from Tetraethoxysilane
    Bil', A. S.
    Aleksandrov, S. E.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2022, 95 (04) : 544 - 550