Ramified extensions of degree p and their Hopf-Galois module structure

被引:0
|
作者
Elder, G. Griffith [1 ]
机构
[1] Univ Nebraska, Dept Math, Omaha, NE 68182 USA
来源
关键词
Artin-Schreier equation; Galois module structure; ARTIN-SCHREIER EXTENSIONS; CYCLIC EXTENSION; 1ST DEGREE; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cyclic, ramified extensions L/K of degree p of local fields with residue characteristic p are fairly well understood. They are defined by an Artin-Schreier equation, unless char(K) = 0 and L = K((p)root pi(K)) for some prime element pi(K) is an element of K. Moreover, through the work of Bertrandias-Ferton (char(K) = 0) and Aiba (char(K) = p), much is known about the Galois module structure of the ideals in such extensions: the structure of each ideal PLn as a module over its associated order K-A[G] (n) = {x is an element of K[G] : xPL(n) subset of PLn} where G = Gal(L/K). The purpose of this paper is to extend these results to separable, ramified extensions of degree p that are not Galois.
引用
收藏
页码:19 / 40
页数:22
相关论文
共 50 条
  • [21] Counting Hopf-Galois structures on cyclic field extensions of squarefree degree
    Alabdali, Ali A.
    Byott, Nigel P.
    JOURNAL OF ALGEBRA, 2018, 493 : 1 - 19
  • [22] GALOIS MODULE STRUCTURE OF THE INTEGERS IN WEAKLY RAMIFIED EXTENSIONS
    ELDER, GG
    MADAN, ML
    ARCHIV DER MATHEMATIK, 1995, 64 (02) : 117 - 120
  • [23] Integral Hopf-Galois structures on degree p2 extensions of p-adic fields
    Byott, NP
    JOURNAL OF ALGEBRA, 2002, 248 (01) : 334 - 365
  • [24] Hopf-Galois module structure of tame Cp x Cp
    Truman, Paul J.
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2016, 28 (02): : 557 - 582
  • [25] Integral Hopf-Galois structures for tame extensions
    Truman, Paul J.
    NEW YORK JOURNAL OF MATHEMATICS, 2013, 19 : 647 - 655
  • [26] Hopf-Galois structures of squarefree degree
    Alabdali, Ali A.
    Byott, Nigel P.
    JOURNAL OF ALGEBRA, 2020, 559 : 58 - 86
  • [27] Homological dimension of weak Hopf-Galois extensions
    Zhou, X. -Y.
    ACTA MATHEMATICA HUNGARICA, 2013, 138 (1-2) : 140 - 146
  • [28] GORENSTEIN HOMOLOGICAL PROPERTIES FOR HOPF-GALOIS EXTENSIONS
    Zhou, Xiaoyan
    Yang, Tao
    COLLOQUIUM MATHEMATICUM, 2019, 157 (02) : 203 - 212
  • [29] Morita equivalence for weak Hopf-Galois extensions
    Wang, Zhong-wei
    Chen, Cong
    Zhang, Liang-yun
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (01) : 162 - 182
  • [30] The group of Hopf-Galois extensions with central invariants
    Alvarez, JNA
    Vilaboa, JMF
    Rodríguez, RG
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (01) : 343 - 373