Best proximity points of p-cyclic orbital Meir-Keeler contraction maps

被引:11
|
作者
Karpagam, Saravanan [1 ]
Zlatanov, Boyan [2 ]
机构
[1] VelTech Univ, Dept Math, Madras, Tamil Nadu, India
[2] Plovdiv Univ Paisii Hilendarski, Fac Math & Informat, 24 Tzar Assen Str, Plovdiv 4000, Bulgaria
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2016年 / 21卷 / 06期
关键词
uniformly convex Banach space; best proximity points; p-cyclic maps; orbital contractions; FIXED-POINTS; EXISTENCE; THEOREMS;
D O I
10.15388/NA.2016.6.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, d) be a metric space, and A(1), A(2), ..., A(p) be nonempty subsets of X. We introduce a self map T on X, called p-cyclic orbital contraction map on the union of A(1), A(2), ..., A(p), and obtain a unique best proximity point of T, that is, a point x is an element of boolean OR(p)(i=1) A(i) such that d (x; Tx) = dist (A(i), A(i+1)), 1 <= i <= p, where dist (A(i), A(i+1)) = inf {d(x, y): x is an element of A(i), y is an element of A(i+1)}.
引用
收藏
页码:790 / 806
页数:17
相关论文
共 50 条
  • [21] Existence of Coupled Best Proximity Points of p-Cyclic Contractions
    Hristov, Miroslav
    Ilchev, Atanas
    Nedelcheva, Diana
    Zlatanov, Boyan
    AXIOMS, 2021, 10 (01)
  • [22] The relation between F-contraction and Meir-Keeler contraction
    Cvetkovic, Marija
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (01)
  • [23] On cyclic Meir-Keeler contractions in metric spaces
    Piatek, Bozena
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (01) : 35 - 40
  • [24] Common Fixed Points of Intuitionistic Fuzzy Maps for Meir-Keeler Type Contractions
    Kanwal, Shazia
    Azam, Akbar
    ADVANCES IN FUZZY SYSTEMS, 2018, 2018
  • [25] On Symmetric Meir-Keeler Contraction Type Couplings with an Application
    Aydi, Hassen
    Isik, Huseyin
    Barakat, M. A.
    Felhi, Abdelbasset
    FILOMAT, 2022, 36 (09) : 2911 - 2920
  • [26] Revisiting the Meir-Keeler Contraction via Simulation Function
    Karapinar, Erdal
    Fulga, Andreea
    Kumam, Poom
    FILOMAT, 2020, 34 (05) : 1645 - 1657
  • [27] Fixed points of α-admissible Meir-Keeler contraction mappings on quasi-metric spaces
    Hamed H Alsulami
    Selma Gülyaz
    İnci M Erhan
    Journal of Inequalities and Applications, 2015
  • [28] Y Fuzzy Meir-Keeler's Contraction and Characterization
    Vajargah, Kianoush Fathi
    Golshan, Hamid Mottaghi
    ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [29] MEIR-KEELER TYPE CONTRACTION VIA RATIONAL EXPRESSION
    Prasad, Koti N. V. V. Vara
    Singh, A. K.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2020, 89 (01): : 19 - 25
  • [30] Fixed points of α-admissible Meir-Keeler contraction mappings on quasi-metric spaces
    Alsulami, Hamed H.
    Gulyaz, Selma
    Erhan, Inci M.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,