Best proximity points of p-cyclic orbital Meir-Keeler contraction maps

被引:11
|
作者
Karpagam, Saravanan [1 ]
Zlatanov, Boyan [2 ]
机构
[1] VelTech Univ, Dept Math, Madras, Tamil Nadu, India
[2] Plovdiv Univ Paisii Hilendarski, Fac Math & Informat, 24 Tzar Assen Str, Plovdiv 4000, Bulgaria
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2016年 / 21卷 / 06期
关键词
uniformly convex Banach space; best proximity points; p-cyclic maps; orbital contractions; FIXED-POINTS; EXISTENCE; THEOREMS;
D O I
10.15388/NA.2016.6.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, d) be a metric space, and A(1), A(2), ..., A(p) be nonempty subsets of X. We introduce a self map T on X, called p-cyclic orbital contraction map on the union of A(1), A(2), ..., A(p), and obtain a unique best proximity point of T, that is, a point x is an element of boolean OR(p)(i=1) A(i) such that d (x; Tx) = dist (A(i), A(i+1)), 1 <= i <= p, where dist (A(i), A(i+1)) = inf {d(x, y): x is an element of A(i), y is an element of A(i+1)}.
引用
收藏
页码:790 / 806
页数:17
相关论文
共 50 条
  • [1] Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps
    Karpagam, S.
    Agrawal, Sushama
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) : 1040 - 1046
  • [2] Best Proximity Point Theorems for p-Cyclic Meir-Keeler Contractions
    S. Karpagam
    Sushama Agrawal
    Fixed Point Theory and Applications, 2009
  • [3] Best Proximity Point Theorems for p-Cyclic Meir-Keeler Contractions
    Karpagam, S.
    Agrawal, Sushama
    FIXED POINT THEORY AND APPLICATIONS, 2009,
  • [4] Best proximity points for cyclic Meir-Keeler contractions
    Di Bari, Cristina
    Suzuki, Tomonari
    Vetro, Calogero
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) : 3790 - 3794
  • [5] Best proximity points for p-summing cyclic orbital Meir-Keeler contractions
    Zlatanov, Boyan
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2015, 20 (04): : 528 - 544
  • [6] Some Results on Best Proximity Points of Cyclic Meir-Keeler Contraction Mappings
    Fakhar, M.
    Mirdamadi, F.
    Soltani, Z.
    FILOMAT, 2018, 32 (06) : 2081 - 2089
  • [7] Best Periodic Proximity Points for Cyclic Weaker Meir-Keeler Contractions
    Chen, Chiming
    Lin, Chingju
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [8] EXISTENCE OF BEST PROXIMITY POINTS FOR SET-VALUED CYCLIC MEIR-KEELER CONTRACTIONS
    Fakhar, Majid
    Soltani, Zeinab
    Zafarani, Jafar
    FIXED POINT THEORY, 2018, 19 (01): : 211 - 217
  • [9] ON GENERALIZATIONS OF THE MEIR-KEELER TYPE CONTRACTION MAPS
    RHOADES, BE
    PARK, S
    MOON, KB
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 146 (02) : 482 - 494
  • [10] Cyclic Meir-Keeler Contraction and Its Fractals
    Pasupathi, R.
    Chand, A. K. B.
    Navascues, M. A.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (09) : 1053 - 1072