Connectedness of Julia sets for a quadratic random dynamical system

被引:16
|
作者
Gong, ZM [1 ]
Qiu, WY
Li, Y
机构
[1] Xiangtan Univ, Sch Business, Xiangtan 411105, Peoples R China
[2] Fudan Univ, Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[3] Xiangtan Univ, Dept Math, Xiangtan 411105, Peoples R China
关键词
D O I
10.1017/S0143385703000129
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a sequence (c(n)) of complex numbers, the quadratic polynomials f(cn) := z(2) + c(n) and the sequence (F-n) of iterates F-n := f(cn) circle...circle f(c1) are considered. The Fatou set F(c(n)) is defined as the set of all z is an element of (C) over cap := C boolean OR {infinity} such that (F-n) is normal in some neighbourhood of z, while the complement J(c(n)) of F(c(n)) (in (C) over cap) is called the Julia set. In this paper we discuss the conditions for J(c(n)) to be totally disconnected. A problem posed by Bruck is solved.
引用
收藏
页码:1807 / 1815
页数:9
相关论文
共 50 条
  • [21] LAPLACIANS ON A FAMILY OF QUADRATIC JULIA SETS II
    Aougab, Tarik
    Dong, Stella Chuyue
    Strichartz, Robert S.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) : 1 - 58
  • [22] LAPLACIANS ON A FAMILY OF QUADRATIC JULIA SETS I
    Flock, Taryn C.
    Strichartz, Robert S.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (08) : 3915 - 3965
  • [23] HAUSDORFF DIMENSION OF JULIA SETS OF QUADRATIC POLYNOMIALS
    Manuel Martinez, Luis
    Ble, Gamaliel
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
  • [24] Hausdorff dimension of quadratic rational Julia sets
    Zhou, Jia
    Liao, Liang Wen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (02) : 331 - 342
  • [25] ON THE DERIVATIVE OF THE HAUSDORFF DIMENSION OF THE QUADRATIC JULIA SETS
    Jaksztas, Ludwik
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (10) : 5251 - 5291
  • [26] Julia sets of random exponential maps
    Lech, Krzysztof
    FUNDAMENTA MATHEMATICAE, 2021, 255 (02) : 159 - 180
  • [27] A dynamical invariant for Sierpinski cardioid Julia sets
    Blanchard, Paul
    Cuzzocreo, Daniel
    Devaney, Robert L.
    Fitzgibbon, Elizabeth
    Silvestri, Stefano
    FUNDAMENTA MATHEMATICAE, 2014, 226 (03) : 253 - 277
  • [28] GENERALIZED DYNAMICAL VARIABLES AND MEASURES FOR THE JULIA SETS
    SERVIZI, G
    TURCHETTI, G
    VAIENTI, S
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1988, 101 (03): : 285 - 307
  • [29] Entire functions whose Julia sets include any finitely many copies of quadratic Julia sets
    Katagata, Koh
    NONLINEARITY, 2017, 30 (06) : 2360 - 2380
  • [30] Conformal trace theorem for Julia sets of quadratic polynomials
    Connes, A.
    Mcdonald, E.
    Sukochev, F.
    Zanin, D.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 2481 - 2506