Handling uncertainties in evolutionary multi-objective optimization

被引:0
|
作者
Tan, Kay Chen [1 ]
Goh, Chi Keong [2 ]
机构
[1] Natl Univ Singapore, 4 Engn Dr 3, Singapore 117576, Singapore
[2] Data Storage Inst, Agency Sci Technol & Res, Singapore 117608, Singapore
来源
COMPUTATIONAL INTELLIGENCE: RESEARCH FRONTIERS | 2008年 / 5050卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary algorithms are stochastic search methods that are efficient and effective for solving sophisticated multi-objective (MO) problems. Advances made in the field of evolutionary multi-objective optimization (EMO) are the results of two decades worth of intense research, studying various topics that are unique to MO optimization. However many of these studies assume that the problem is deterministic and static, and the EMO performance generally deteriorates in the presence of uncertainties. In certain situations, the solutions found may not even be implementable in practice. In this chapter, the challenges faced in handling three different forms of uncertainties in EMO will be discussed, including 1) noisy objective functions, 2) dynamic MO fitness landscape, and 3) robust MO optimization. Specifically, the impact of these uncertainties on MO optimization will be described and the approaches/modifications to basic algorithm design for better and robust EMO performance will be presented.
引用
收藏
页码:262 / +
页数:6
相关论文
共 50 条
  • [21] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [22] An orthogonal multi-objective evolutionary algorithm for multi-objective optimization problems with constraints
    Zeng, SY
    Kang, LSS
    Ding, LXX
    EVOLUTIONARY COMPUTATION, 2004, 12 (01) : 77 - 98
  • [23] Handling multi-objective optimization problems with unbalanced constraints and their effects on evolutionary algorithm performance
    Peng, Chaoda
    Liu, Hai-Lin
    Goodman, Erik D.
    SWARM AND EVOLUTIONARY COMPUTATION, 2020, 55
  • [24] Handling time-varying constraints and objectives in dynamic evolutionary multi-objective optimization
    Azzouz, Radhia
    Bechikh, Slim
    Ben Said, Lamjed
    Trabelsi, Walid
    SWARM AND EVOLUTIONARY COMPUTATION, 2018, 39 : 222 - 248
  • [25] Evolutionary methods for multi-objective portfolio optimization
    Radiukyniene, I.
    Zilinskas, A.
    WORLD CONGRESS ON ENGINEERING 2008, VOLS I-II, 2008, : 1155 - +
  • [26] Illustration of fairness in evolutionary multi-objective optimization
    Friedrich, Tobias
    Horoba, Christian
    Neumann, Frank
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (17) : 1546 - 1556
  • [27] Evolutionary Multi-Objective Optimization for Biped Walking
    Yanase, Toshihiko
    Iba, Hitoshi
    SIMULATED EVOLUTION AND LEARNING, PROCEEDINGS, 2008, 5361 : 635 - 644
  • [28] An evolutionary algorithm for dynamic multi-objective optimization
    Wang, Yuping
    Dang, Chuangyin
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) : 6 - 18
  • [29] An evolutionary multi-objective optimization system for earthworks
    Parente, M.
    Cortez, P.
    Gomes Correia, A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (19) : 6674 - 6685
  • [30] Multi-Objective BOO Optimization with Evolutionary Algorithms
    Shirinzadeh, Saeideh
    Soeken, Mathias
    Drechsler, Rolf
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 751 - 758