A response probability estimation for non-ignorable non-response

被引:3
|
作者
Chung, Hee Young [1 ]
Shin, Key-Il [1 ]
机构
[1] Hankuk Univ Foreign Studies, Dept Stat, 81 Oedae Ro, Yongin 17035, Gyeonggido, South Korea
基金
新加坡国家研究基金会;
关键词
response probability model; bias estimation; sample distribution; population distribution; post-stratification; ADJUST;
D O I
10.29220/CSAM.2022.29.2.263
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Use of appropriate technique for non-response occurring in sample survey improves the accuracy of the estimation. Many studies have been conducted for handling non-ignorable non-response and commonly the response probability is estimated using the propensity score method. Recently, post-stratification method to obtain the response probability proposed by Chung and Shin (2017) reduces the effect of bias and gives a good performance in terms of the MSE. In this study, we propose a new response probability estimation method by combining the propensity score adjustment method using the logistic regression model with post-stratification method used in Chung and Shin (2017). The superiority of the proposed method is confirmed through simulation.
引用
收藏
页码:263 / 275
页数:13
相关论文
共 50 条
  • [31] SEMIPARAMETRIC ESTIMATION OF NON-IGNORABLE MISSINGNESS WITH REFRESHMENT SAMPLE
    Zheng, Jianfei
    Wang, Jing
    Xue, Lan
    Beigene, Annie Qu
    STATISTICA SINICA, 2025, 35 (01) : 131 - 150
  • [32] Non-response models for the analysis of non-monotone ignorable missing data
    Robins, JM
    Gill, RD
    STATISTICS IN MEDICINE, 1997, 16 (1-3) : 39 - 56
  • [33] IGNORING NON-IGNORABLE MISSINGNESS
    Rabe-Hesketh, Sophia
    Skrondal, Anders
    PSYCHOMETRIKA, 2023, 88 (01) : 31 - 50
  • [34] Ignoring Non-ignorable Missingness
    Sophia Rabe-Hesketh
    Anders Skrondal
    Psychometrika, 2023, 88 : 31 - 50
  • [35] Feature screening under missing indicator imputation with non-ignorable missing response
    Zhang, Jing
    Wang, Qihua
    Kang, Jian
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 149
  • [36] Population Size Estimation with Covariate Values Missing Non-ignorable
    Li-ping LIU
    Zhi-chao GUO
    Xiao-gang DUAN
    ActaMathematicaeApplicataeSinica, 2016, 32 (03) : 659 - 668
  • [37] Estimation of network treatment effects with non-ignorable missing confounders
    Sun, Zhaohan
    Zhu, Yeying
    Dubin, Joel A.
    JOURNAL OF CAUSAL INFERENCE, 2024, 12 (01)
  • [38] Population size estimation with covariate values missing non-ignorable
    Liu, Li-ping
    Guo, Zhi-chao
    Duan, Xiao-gang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (03): : 659 - 668
  • [39] Population size estimation with covariate values missing non-ignorable
    Li-ping Liu
    Zhi-chao Guo
    Xiao-gang Duan
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 659 - 668
  • [40] Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response
    Yucel, Recai M.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1874): : 2389 - 2403